cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A072709 Integers m such that the last digit of Fibonacci(m) is 7.

Original entry on oeis.org

14, 16, 17, 23, 34, 37, 43, 56, 74, 76, 77, 83, 94, 97, 103, 116, 134, 136, 137, 143, 154, 157, 163, 176, 194, 196, 197, 203, 214, 217, 223, 236, 254, 256, 257, 263, 274, 277, 283, 296, 314, 316, 317, 323, 334, 337, 343, 356, 374, 376, 377, 383, 394, 397, 403
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of form (14+60k), (16+60k), (17+60k), (23+60k), (24+60k), (34+60k), (37+60k), (43+60k), (56+60k), with k>=0.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],Last[IntegerDigits[Fibonacci[#]]]==7&] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,1,-1},{14,16,17,23,34,37,43,56,74},60] (* Harvey P. Dale, Sep 12 2014 *)

Formula

G.f.: x*(4*x^8+13*x^7+6*x^6+3*x^5+11*x^4+6*x^3+x^2+2*x+14) / (x^9-x^8-x+1). - Colin Barker, Jun 16 2013

A072711 Integers m such that the last digit of Fibonacci(m) is 9.

Original entry on oeis.org

11, 29, 31, 32, 38, 49, 52, 58, 71, 89, 91, 92, 98, 109, 112, 118, 131, 149, 151, 152, 158, 169, 172, 178, 191, 209, 211, 212, 218, 229, 232, 238, 251, 269, 271, 272, 278, 289, 292, 298, 311, 329, 331, 332, 338, 349, 352, 358, 371, 389, 391, 392, 398, 409
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Comments

Sequence contains numbers of form (11+60k), (29+60k), (31+60k), (32+60k), (38+60k), (49+60k), (52+60k), (58+60k), with k>=0.

Crossrefs

Programs

  • Mathematica
    Select[Range[500],Last[IntegerDigits[Fibonacci[#]]]==9&] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,1,-1},{11,29,31,32,38,49,52,58,71},60] (* Harvey P. Dale, Sep 06 2015 *)

Formula

G.f.: x*(2*x^8+6*x^7+3*x^6+11*x^5+6*x^4+x^3+2*x^2+18*x+11) / (x^9-x^8-x+1). - Colin Barker, Jun 16 2013

A137290 Fibonacci(n) mod 30.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 4, 25, 29, 24, 23, 17, 10, 27, 7, 4, 11, 15, 26, 11, 7, 18, 25, 13, 8, 21, 29, 20, 19, 9, 28, 7, 5, 12, 17, 29, 16, 15, 1, 16, 17, 3, 20, 23, 13, 6, 19, 25, 14, 9, 23, 2, 25, 27, 22, 19, 11, 0, 11, 11, 22, 3, 25, 28, 23, 21, 14, 5, 19, 24, 13, 7, 20, 27, 17, 14
Offset: 1

Views

Author

Aaron M. Churchill (churchil(AT)math.udel.edu), Mar 15 2008

Keywords

Comments

Has period 120.

Crossrefs

Programs

  • Mathematica
    Mod[Fibonacci[Range[80]],30] (* Harvey P. Dale, Sep 12 2022 *)
  • PARI
    a(n) = fibonacci(n) % 30 \\ Michel Marcus, Jun 12 2013

A181190 Maximal length of chain-addition sequence mod 10 with window of size n.

Original entry on oeis.org

1, 60, 124, 1560, 4686, 1456, 18744, 585936, 4882810, 212784
Offset: 1

Views

Author

Alexander Dashevsky (atanvarnoalda(AT)gmail.com), Oct 10 2010

Keywords

Comments

Chain addition mod 10 with window n: take an n-digit 'seed'. Take the sum of its digits mod 10 and append to the seed. Repeat with the last n digits of the string, until the seed appears again.
This sequence shows the lengths of the longest sequences for different window sizes.
a(1)-a(10) all occur for seed 1 (among others). If this is always true, the sequence continues: 406224, 12695306, 4272460934, 380859180, 122070312496, 518798826, 3433227539058. - Lars Blomberg, Feb 12 2013
Comment from Michel Lagneau, Jan 20 2017, edited by N. J. A. Sloane, Jan 24 2017: (Start)
If seed 1 is always as good as or better than any other, as seems likely, then this sequence has the following alternative description.
Consider the n initial terms of an infinite sequence S(k, n) of decimal digits given by 0, 0,..., 0, 1. The succeeding terms are given by the final digits in the sum of the n immediately preceding terms. The sequence lists the period of each sequence corresponding to n = 2, 3, ...
a(2) = period of A000045 mod 10 (Fibonacci numbers mod 10) = A001175(10).
a(3) = period of A000073 mod 10 (tribonacci numbers mod 10) = A046738(10).
a(4) = period of A000078 mod 10 (tetranacci numbers mod 10) = A106295(10).
a(5) = period of A001591 mod 10 (pentanacci numbers mod 10) = A106303(10).
a(6) = period of A001592 mod 10 (hexanacci numbers mod 10).
a(7) = period of A122189 mod 10 (heptanacci numbers mod 10).
a(8) = period of A079262 mod 10 (octanacci numbers mod 10).
a(4) = 1560 because the four initial terms 0, 0, 0, 1 => S(k, 4) = 0, 0, 0, 1, 1, 2, 4, 8, 5, 9, 6, 8, 8, 1, 3, 0, 2, 6, 1, 9, 8, ... (tetranacci numbers mod 10). This sequence is periodic with period 1560:
S(1560 + 1, 4) = S(1, 4) = 0,
S(1560 + 2, 4) = S(2, 4) = 0,
S(1560 + 3, 4) = S(3, 4) = 0,
S(1560 + 4, 4) = S(4, 4) = 1.
(End)

Examples

			For n=2, the longest sequence begins with '01' (among others):
01123583145943707741561785381909987527965167303369549325729101.
It is 60 digits long (not counting the second '01' at the end).
For n=3, one of the longest sequences begins again with '001':
00112473441944756893025746770415061742394699425184352079627546556679289964992013
48570291225960516297849144970639807524172091001 (124 digits long without the second '001').
		

Crossrefs

Extensions

a(8)-a(10) from Lars Blomberg, Feb 12 2013

A248740 a(n) = Fibonacci(n) mod 1000.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 597, 584, 181, 765, 946, 711, 657, 368, 25, 393, 418, 811, 229, 40, 269, 309, 578, 887, 465, 352, 817, 169, 986, 155, 141, 296, 437, 733, 170, 903, 73, 976, 49, 25, 74, 99, 173, 272
Offset: 0

Views

Author

Franz Vrabec, Oct 13 2014

Keywords

Comments

The sequence is periodic with period 1500 = A001175(1000).
A number m of {0, 1, ..., 999} is not in the range of this sequence, iff m is congruent to 4 or 6 mod 8.
These numbers are the 250 = 1000 - A066853(1000) numbers of the set {4, 6, 12, 14, ..., 996, 998}. E.g., a Fibonacci number will never end in the digits '100'.

Examples

			a(17) = (a(16) + a(15)) mod 1000 = (987 + 610) mod 1000 = 1597 mod 1000 = 597.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n) mod 1000: n in [0..80]]; // Vincenzo Librandi, Oct 17 2014
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, irem(a(n-1)+a(n-2), 1000))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Oct 18 2015
  • PARI
    vector(100,n,fibonacci(n-1)%1000) \\ Derek Orr, Oct 17 2014

Formula

a(n) = (a(n-1) + a(n-2)) mod 1000 for n>1, a(0) = 0, a(1) = 1.

Extensions

More terms from Vincenzo Librandi, Oct 17 2014

A256985 Define a sequence {b(i), i >= 0} by b(i) = 1 for 0 <= i <= n, thereafter b(i+1) = (b(i)+b(i-n)) mod 10; consider the sequence of n-tuples [b(i-n+1), b(i-n+2),...,b(i)]; this repeats with period a(n).

Original entry on oeis.org

60, 217, 520, 42, 196812, 2480437, 2232, 7128815, 1736327236, 124516392, 203450520, 40193528485, 14417724597564, 22856442972, 324145501174, 7946757, 193726348876699204, 206135768515040, 581179046630097612, 32289695739703771, 275114595439871720
Offset: 1

Views

Author

N. J. A. Sloane, Apr 26 2015

Keywords

Examples

			For n=1 we get the Fibonacci sequence (starting 1,1,2,3,...), A000045, which read mod 10 repeats with period 60 (see A003893), so a(1)=60.  The full period in this case is:
[1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7, 5, 2, 7, 9, 6, 5, 1, 6, 7, 3, 0, 3, 3, 6, 9, 5, 4, 9, 3, 2, 5, 7, 2, 9, 1, 0].
		

Crossrefs

Programs

  • Python
    from itertools import accumulate # requires python 3.2 or higher
    def A256985(n):
        ilist, k = [1]*(n+1), 1
        jlist = [d % 10 for d in accumulate(ilist)]
        jlist = [jlist[-1]]+ jlist[:-1]
        while ilist != jlist:
            k += 1
            jlist = [d % 10 for d in accumulate(jlist)]
            jlist = [jlist[-1]]+ jlist[:-1]
        return k # Chai Wah Wu, Apr 30 2015

Extensions

a(6)-a(11) from Chai Wah Wu, Apr 30 2015
a(12)-a(21) from Hiroaki Yamanouchi, May 04 2015

A341414 a(n) = (Fibonacci(n)*Lucas(n)) mod 10.

Original entry on oeis.org

0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9, 0, 1, 3, 8, 1, 5, 4, 7, 7, 4, 5, 1, 8, 3, 1, 0, 9, 7, 2, 9, 5, 6, 3, 3, 6, 5, 9, 2, 7, 9
Offset: 0

Views

Author

Jens Rasmussen, Feb 11 2021

Keywords

Comments

Fibonacci starting with 0,1 and Lucas starting with 2,1.
Blocks of 30 numbers with 10 even and 20 uneven numbers.
Symmetric as a(7-i)=a(8+i) for i=1,2,...,6, and a(22-j)=a(23+j) for j=1..21.
Decimal expansion of 13801675776055042253380279/999000999000999000999000999. - Jianing Song, Apr 04 2021

Examples

			For n=5: a(5) = (Fibonacci(5)*Lucas(5)) mod 10 = (5*11) mod 10 = 55 mod 10 = 5.
		

Crossrefs

Bisection of A003893.

Programs

  • Mathematica
    Table[Mod[Fibonacci@n*LucasL@n, 10], {n, 0, 100}] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
  • PARI
    a(n) = fibonacci(2*(n%30)) % 10 \\ Jianing Song, Apr 04 2021

Formula

a(n) = (Fibonacci(n)*Lucas(n)) mod 10 = Fibonacci(2*n) mod 10 using Binet's formula for Fibonacci and corresponding formula for Lucas.
a(n) = a(n-30).
a(n) = a(n-3) - a(n-6) + a(n-9) - a(n-12) + a(n-15) - a(n-18) + a(n-21) - a(n-24) + a(n-27).
a(n) = A003893(2*n).

A367556 Comma transform of the Fibonacci numbers.

Original entry on oeis.org

1, 11, 12, 23, 35, 58, 81, 32, 13, 45, 58, 91, 42, 33, 76, 9, 71, 72, 44, 16, 51, 61, 12, 74, 87, 51, 31, 83, 15, 98, 1, 92, 93, 85, 79, 51, 22, 73, 96, 61, 51, 12, 64, 77, 31, 1, 32, 34, 67, 91, 52, 43, 95, 38, 21, 52, 73, 25, 99, 11, 2, 14, 16, 21, 31, 52, 84
Offset: 0

Views

Author

Alois P. Heinz, Nov 22 2023

Keywords

Comments

See A367360 for further information.

Crossrefs

Programs

  • Maple
    F:= combinat[fibonacci]:
    a:= n-> parse(cat(""||(F(n))[-1], ""||(F(n+1))[1])):
    seq(a(n), n=0..92);
  • Mathematica
    With[{nmax=100},Map[10Mod[#[[1]],10]+IntegerDigits[#[[2]]][[1]]&,Partition[Fibonacci[Range[0,nmax+1]],2,1]]] (* Paolo Xausa, Nov 24 2023 *)
  • Python
    from sympy import fibonacci
    from itertools import islice, pairwise, count
    def S(): yield from (fibonacci(i) for i in count(0))
    def C(g): # generator of comma transform of sequence passed as a generator
        yield from (10*(t%10) + int(str(u)[0]) for t, u in pairwise(g))
    def agen(): return C(S())
    print(list(islice(agen(), 67))) # Michael S. Branicky, Jan 05 2024

Formula

a(n) = 10 * A003893(n) + A008963(n+1).

A080787 a(1)=a(2)=1; a(n) = a(n-1) + last decimal digit of a(n-2).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 24, 25, 29, 34, 43, 47, 50, 57, 57, 64, 71, 75, 76, 81, 87, 88, 95, 103, 108, 111, 119, 120, 129, 129, 138, 147, 155, 162, 167, 169, 176, 185, 191, 196, 197, 203, 210, 213, 213, 216, 219, 225, 234, 239, 243, 252, 255, 257, 262, 269, 271
Offset: 1

Views

Author

Benoit Cloitre, Mar 12 2003

Keywords

Formula

a(n)=a(n-1)+a(n-2)(mod 10); for n>=3 a(n)-a(n-1)=A003893(n-2)=A000045(n-2)(mod 10)

A160137 Lodumo_10 of Fibonacci numbers.

Original entry on oeis.org

0, 1, 11, 2, 3, 5, 8, 13, 21, 4, 15, 9, 14, 23, 7, 10, 17, 27, 24, 31, 25, 6, 41, 37, 18, 35, 33, 28, 51, 19, 20, 29, 39, 38, 47, 45, 12, 57, 49, 16, 55, 61, 26, 67, 43, 30, 53, 63, 36, 59, 65, 34, 69, 73, 22, 75, 77, 32, 79, 71, 40, 81, 91, 42, 83, 85, 48, 93, 101, 44, 95, 89, 54
Offset: 0

Views

Author

Philippe Deléham, May 02 2009

Keywords

Comments

Permutation of nonnegative integers.

Crossrefs

Formula

a(n)=lod_10(A000045(n)).
Previous Showing 21-30 of 32 results. Next