cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 82 results. Next

A059896 The set of Fermi-Dirac factors of A(n,k) is the union of the Fermi-Dirac factors of n and k. Symmetric square array read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 8, 3, 8, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 24, 5, 24, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 27, 8, 35, 6, 35, 8, 27, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12, 13, 24
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Every positive integer, m, is the product of a unique subset, S(m), of the numbers listed in A050376 (primes, squares of primes etc.) The Fermi-Dirac factors of m are the members of S(m). So T(n,k) is the product of the members of (S(n) U S(k)).
Old name: Table a(i,j) = product prime(k)^(Ei(k) OR Ej(k)) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; OR is the bitwise operation on binary representation of the exponents.
Analogous to LCM, with OR replacing MAX.
A003418-analog seems to be A066616. - Antti Karttunen, Apr 12 2017
Considered as a binary operation, the result is the lowest common multiple of the squarefree parts of its operands multiplied by the square of the operation's result when applied to the square roots of the square parts of its operands. - Peter Munn, Mar 02 2022

Examples

			A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 OR 3) * 3^(3 OR 5) = 2^7*3^7 = 279936.
The top left 12 X 12 corner of the array:
   1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12
   2,  2,  6,  8, 10,  6, 14,  8,  18,  10,  22,  24
   3,  6,  3, 12, 15,  6, 21, 24,  27,  30,  33,  12
   4,  8, 12,  4, 20, 24, 28,  8,  36,  40,  44,  12
   5, 10, 15, 20,  5, 30, 35, 40,  45,  10,  55,  60
   6,  6,  6, 24, 30,  6, 42, 24,  54,  30,  66,  24
   7, 14, 21, 28, 35, 42,  7, 56,  63,  70,  77,  84
   8,  8, 24,  8, 40, 24, 56,  8,  72,  40,  88,  24
   9, 18, 27, 36, 45, 54, 63, 72,   9,  90,  99, 108
  10, 10, 30, 40, 10, 30, 70, 40,  90,  10, 110, 120
  11, 22, 33, 44, 55, 66, 77, 88,  99, 110,  11, 132
  12, 24, 12, 12, 60, 24, 84, 24, 108, 120, 132,  12
		

Crossrefs

Sequences used in a definition of this sequence: A003986, A000188/A007913/A008833, A052330/A052331.
Has simple/very significant relationships with A003961, A059895/A059897, A225546, A267116.

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059895(x,y) * A059897(x,y).
A(x,y) * A059895(x,y) = x*y.
(End).
From Peter Munn, Mar 02 2022: (Start)
OR denotes the bitwise operation (A003986).
Limited multiplicative property: if gcd(n_1*k_1, n_2*k_2) = 1 then A(n_1*n_2, k_1*k_2) = A(n_1, k_1) * A(n_2, k_2).
For prime p, A(p^e_1, p^e_2) = p^(e_1 OR e_2).
A(n, A(m, k)) = A(A(n, m), k).
A(n, k) = A(k, n).
A(n, 1) = A(n, n) = n.
A(n^2, k^2) = A(n, k)^2.
A(n, k) = A(A007913(n), A007913(k)) * A(A008833(n), A008833(k)) = lcm(A007913(n), A007913(k)) * A(A000188(n), A000188(k))^2.
A007947(A(n, k)) = A007947(n*k).
Isomorphism: A(A052330(n), A052330(k)) = A052330(n OR k).
Equivalently, A(n, k) = A052330(A052331(n) OR A052331(k)).
A(A003961(n), A003961(k)) = A003961(A(n, k)).
A(A225546(n), A225546(k)) = A225546(A(n, k)).
(End)

Extensions

New name from Peter Munn, Mar 02 2022

A163617 a(2*n) = 2*a(n), a(2*n + 1) = 2*a(n) + 2 + (-1)^n, for all n in Z.

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 15, 24, 27, 30, 31, 28, 31, 30, 31, 48, 51, 54, 55, 60, 63, 62, 63, 56, 59, 62, 63, 60, 63, 62, 63, 96, 99, 102, 103, 108, 111, 110, 111, 120, 123, 126, 127, 124, 127, 126, 127, 112, 115, 118, 119, 124, 127, 126, 127, 120, 123, 126, 127, 124, 127, 126
Offset: 0

Views

Author

Michael Somos, Aug 01 2009

Keywords

Comments

Fibbinary numbers (A003714) give all integers n >= 0 for which a(n) = 3*n.
From Antti Karttunen, Feb 21 2016: (Start)
Fibbinary numbers also give all integers n >= 0 for which a(n) = A048724(n).
Note that there are also other multiples of three in the sequence, for example, A163617(99) = 231 ("11100111" in binary) = 3*77, while 77 ("1001101" in binary) is not included in A003714. Note that 99 is "1100011" in binary.
(End)

Examples

			G.f. = 3*x + 6*x^2 + 7*x^3 + 12*x^4 + 15*x^5 + 14*x^6 + 15*x^7 + 24*x^8 + 27*x^9 + ...
		

Crossrefs

Programs

Formula

a(n) = -A163618(-n) for all n in ZZ.
Conjecture: a(n) = A003188(n) + (6*n + 1 - (-1)^n)/4. - Velin Yanev, Dec 17 2016

Extensions

Comment about Fibbinary numbers rephrased by Antti Karttunen, Feb 21 2016

A053398 Nim-values from game of Kopper's Nim.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 2, 0, 1, 0, 3, 3, 3, 3, 3, 3, 3, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 0, 2, 0, 2, 0, 3, 0, 3, 0, 2, 0, 2, 0, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Rows/columns 1-10 are A007814, A050603, A053399, A053384-A053890.
Comment from R. K. Guy: David Singmaster (zingmast(AT)sbu.ac.uk) sent me, about 5 years ago, a game he'd received from Bodo Koppers. It is played with two heaps of beans. The move is to remove one heap and split the other into two nonempty heaps. I'm not sure if Koppers invented it, or got it from elsewhere. I do not think that he analyzed it, but Singmaster did.

Crossrefs

Cf. A003986, A007814 (both edges & central terms & minima per row), A000523 (max per row), A245836 (row sums), A003987, A051775.

Programs

  • Haskell
    a053398 :: Int -> Int -> Int
    a053398 n k = a007814 $ a003986 (n - 1) (k - 1) + 1
    a053398_row n = map (a053398 n) [1..n]
    a053398_tabl = map a053398_row [1..]
    -- Reinhard Zumkeller, Aug 04 2014

Formula

a(x, y) = place of last zero bit of (x-1) OR (y-1).
T(n,k) = A007814(A003986(n-1,k-1)+1). - Reinhard Zumkeller, Aug 04 2014

A269174 Formula for Wolfram's Rule 124 cellular automaton: a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 11, 24, 27, 30, 31, 28, 31, 22, 19, 48, 51, 54, 55, 60, 63, 62, 59, 56, 59, 62, 63, 44, 47, 38, 35, 96, 99, 102, 103, 108, 111, 110, 107, 120, 123, 126, 127, 124, 127, 118, 115, 112, 115, 118, 119, 124, 127, 126, 123, 88, 91, 94, 95, 76, 79, 70, 67, 192, 195, 198, 199, 204, 207, 206, 203, 216
Offset: 0

Views

Author

Antti Karttunen, Feb 22 2016

Keywords

Crossrefs

Cf. A269175.
Cf. A269176 (numbers not present in this sequence).
Cf. A269177 (same sequence sorted into ascending order, duplicates removed).
Cf. A269178 (numbers that occur only once).
Cf. A267357 (iterates from 1 onward).

Programs

Formula

a(n) = A163617(n) AND A269173(n).
a(n) = A163617(n) AND (A048724(n) OR A048725(n)).
a(n) = (n OR 2n) AND ((n XOR 2n) OR (n XOR 4n)).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A161903(A057889(n))). [Rule 124 is the mirror image of rule 110.]
G.f.: (-3*x^3 - 2*x^2 - 3*x)/(x^4 - 1) + Sum_{k>=1}((2^(k + 1)*x^(2^k) - 2^(k + 1)*x^(14*2^(k - 2)))/((x^(2^(k + 2)) - 1)*(x - 1))). - Miles Wilson, Jan 25 2025

A067138 OR-numbral multiplication table, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 7, 8, 5, 0, 0, 6, 10, 12, 12, 10, 6, 0, 0, 7, 12, 15, 16, 15, 12, 7, 0, 0, 8, 14, 14, 20, 20, 14, 14, 8, 0, 0, 9, 16, 15, 24, 21, 24, 15, 16, 9, 0, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 0, 11, 20, 27, 32, 31, 28
Offset: 0

Views

Author

Jens Voß, Jan 02 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic

Examples

			The top left 0..16 x 0..16 corner of the array:
  0,  0,  0,  0,  0,  0,  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
  0,  1,  2,  3,  4,  5,  6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
  0,  2,  4,  6,  8, 10, 12,  14,  16,  18,  20,  22,  24,  26,  28,  30,
  0,  3,  6,  7, 12, 15, 14,  15,  24,  27,  30,  31,  28,  31,  30,  31,
  0,  4,  8, 12, 16, 20, 24,  28,  32,  36,  40,  44,  48,  52,  56,  60,
  0,  5, 10, 15, 20, 21, 30,  31,  40,  45,  42,  47,  60,  61,  62,  63,
  0,  6, 12, 14, 24, 30, 28,  30,  48,  54,  60,  62,  56,  62,  60,  62,
  0,  7, 14, 15, 28, 31, 30,  31,  56,  63,  62,  63,  60,  63,  62,  63,
  0,  8, 16, 24, 32, 40, 48,  56,  64,  72,  80,  88,  96, 104, 112, 120,
  0,  9, 18, 27, 36, 45, 54,  63,  72,  73,  90,  91, 108, 109, 126, 127,
  0, 10, 20, 30, 40, 42, 60,  62,  80,  90,  84,  94, 120, 122, 124, 126,
  0, 11, 22, 31, 44, 47, 62,  63,  88,  91,  94,  95, 124, 127, 126, 127,
  0, 12, 24, 28, 48, 60, 56,  60,  96, 108, 120, 124, 112, 124, 120, 124,
  0, 13, 26, 31, 52, 61, 62,  63, 104, 109, 122, 127, 124, 125, 126, 127,
  0, 14, 28, 30, 56, 62, 60,  62, 112, 126, 124, 126, 120, 126, 124, 126,
  0, 15, 30, 31, 60, 63, 62,  63, 120, 127, 126, 127, 124, 127, 126, 127,
  0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240,
.
Multiplying 3 ("11" in binary) with itself in this system means taking bitwise-or of "11" with itself, when shifted one bit-position left:
       11
      110
  -------
OR:   111 = 7 in decimal = A(3,3).
.
Multiplying 10 (= "1010" in binary) and 11 (= "1011" in binary) in this system means taking bitwise-or of binary number 1011 when shifted once left with the same binary number when shifted three bit-positions left:
      10110
    1011000
    -------
OR: 1011110 = 94 in decimal = A(10,11) = A(11,10).
		

Crossrefs

Cf. A003986, A067139, A048888, A007059, A067398 (main diagonal).
Cf. also A004247, A048720 for analogous multiplication tables.

Programs

  • PARI
    t(n, k) = {res = 0; for (i=0, length(binary(n))-1, if (bittest(n, i), res = bitor(res, shift(k, i)));); return (res);} \\ Michel Marcus, Apr 14 2013

Formula

From Rémy Sigrist, Mar 17 2021: (Start)
T(n, 0) = 0.
T(n, 1) = n.
T(n, 2^k) = n*2^k for any k >= 0.
T(n, n) = A067398(n).
(End)
For all n, k: A048720(n,k) <= A(n,k) <= A004247(n,k). - Antti Karttunen, Mar 17 2021

Extensions

Example-section rewritten by Antti Karttunen, Mar 17 2021

A067139 Irreducible elements in OR-numbral arithmetic.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 13, 17, 19, 23, 25, 29, 33, 35, 37, 39, 41, 43, 49, 53, 57, 65, 67, 69, 71, 75, 77, 79, 81, 83, 87, 89, 93, 97, 101, 105, 107, 113, 117, 121, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 157, 159, 161, 163, 167, 169, 171, 177, 179
Offset: 1

Views

Author

Jens Voß, Jan 02 2002

Keywords

Comments

Numbers m such that there is no number d in the range 1 < d < m with d*k = m for any 1 < k < m, where * is defined in A066376.
See A048888 for the definition of OR-numbral arithmetic. Note that 2 is the only prime element in OR-numbral arithmetic; for all other nonunit irreducibles x there exist numbers a and b not divisible by x such that x is a divisor of a * b.
Numbers m such that A066376(m) = 1.
1 together with primes in lunar arithmetic base 2. - N. J. A. Sloane, Aug 14 2010

Crossrefs

See A169912 for the number of elements that are n bits long - N. J. A. Sloane, Aug 31 2010. See A171000 for the binary expansions.

Programs

  • Haskell
    import Data.List (elemIndices)
    a067139 n = a067139_list !! (n-1)
    a067139_list = 1 : map (+ 1) (elemIndices 1 a066376_list)
    -- Reinhard Zumkeller, Mar 01 2013

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe and Joshua Zucker, Jun 12 2007

A080541 In binary representation: keep the first digit and left-rotate the others.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 8, 10, 12, 14, 9, 11, 13, 15, 16, 18, 20, 22, 24, 26, 28, 30, 17, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 64, 66, 68, 70, 72, 74, 76, 78, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Permutation of natural numbers: let r(n,0)=n, r(n,k)=a(r(n,k-1)) for k>0, then r(n,floor(log_2(n))) = n and for n>1: r(n,floor(log_2(n))-1) = A080542(n).
Discarding their most significant bit, binary representations of numbers present in each cycle of this permutation form a distinct equivalence class of binary necklaces, thus there are A000031(n) separate cycles in each range [2^n .. (2^(n+1))-1] (for n >= 0) of this permutation. A256999 gives the largest number present in n's cycle. - Antti Karttunen, May 16 2015

Examples

			a(20)=a('10100')='11000'=24; a(24)=a('11000')='10001'=17.
		

Crossrefs

Inverse: A080542.
The set of permutations {A059893, A080541, A080542} generates an infinite dihedral group.

Programs

  • Maple
    f:= proc(n) local d;
       d:= ilog2(n);
       if n >= 3/2*2^d then 2*n+1-2^(d+1) else 2*n - 2^d fi
    end proc:
    map(f, [$1..100]); # Robert Israel, May 19 2015
  • Mathematica
    A080541[n_] := FromDigits[Join[{First[#]}, RotateLeft[Rest[#]]], 2] & [IntegerDigits[n, 2]];
    Array[A080541, 100] (* Paolo Xausa, May 13 2025 *)
  • Python
    def A080541(n): return ((n&(m:=1< 1 else n  # Chai Wah Wu, Jan 22 2023
  • R
    maxlevel <- 6 # by choice
    a <- 1:3
    for(m in 1:maxlevel) for(k in 0:(2^(m-1)-1)){
    a[2^(m+1)       + 2*k    ] = 2*a[2^m           + k]
    a[2^(m+1)       + 2*k + 1] = 2*a[2^m + 2^(m-1) + k]
    a[2^(m+1) + 2^m + 2*k    ] = 2*a[2^m           + k] + 1
    a[2^(m+1) + 2^m + 2*k + 1] = 2*a[2^m + 2^(m-1) + k] + 1
    }
    a
    # Yosu Yurramendi, Oct 12 2020
    
  • Scheme
    (define (A080541 n) (if (< n 2) n (A003986bi (A053644 n) (+ (* 2 (A053645 n)) (A079944off2 n))))) ;; A003986bi gives the bitwise OR of its two arguments. See A003986.
    ;; Where A079944off2 gives the second most significant bit of n. (Cf. A079944):
    (define (A079944off2 n) (A000035 (floor->exact (/ n (A072376 n)))))
    ;; Antti Karttunen, May 16 2015
    

Formula

From Antti Karttunen, May 16 2015: (Start)
a(1) = 1; for n > 1, a(n) = A053644(n) bitwise_OR (2*A053645(n) + second_most_significant_bit_of(n)). [Here bitwise_OR is a 2-argument function given by array A003986 and second_most_significant_bit_of gives the second most significant bit (0 or 1) of n larger than 1. See A079944.]
Other identities. For all n >= 1:
a(n) = A059893(A080542(A059893(n))).
a(n) = A054429(a(A054429(n))).
(End)
A080542(a(n)) = a(A080542(n)) = n. [A080542 is the inverse permutation.]
From Robert Israel, May 19 2015: (Start)
Let d = floor(log[2](n)). If n >= 3*2^(d-1) then a(n) = 2*n + 1 - 2^(d+1), otherwise a(n) = 2*n - 2^d.
G.f.: 2*x/(x-1)^2 + Sum_{n>=1} x^(2^n)+(2^n-1)*x^(3*2^(n-1)))/(x-1). (End)

A067399 Number of divisors of n in OR-numbral arithmetic.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 3, 4, 2, 4, 2, 6, 2, 6, 5, 5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8, 6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14, 7, 2, 4, 2, 6, 2, 4, 2, 8, 3, 4, 2, 6, 2, 4, 2, 10, 2, 4, 2, 9, 5, 4, 2, 8, 2, 8, 4, 6, 2, 8, 6, 12, 2, 4, 4, 6
Offset: 1

Views

Author

Jens Voß, Jan 23 2002

Keywords

Comments

See A048888 for the definition of OR-numbral arithmetic. The example shows that this sequence is not multiplicative.
In other words, number of lunar divisors of n in base 2.

Examples

			a(15)=5 since [15] has the 5 OR-numbral divisors [1], [3], [5], [7] and [15].
If written as a triangle with rows of lengths 1,2,4,8,16,...:
1,
2, 2,
3, 2, 4, 3,
4, 2, 4, 2, 6, 2, 6, 5,
5, 2, 4, 2, 6, 3, 4, 2, 8, 2, 4, 4, 9, 2, 10, 8,
6, 2, 4, 2, 6, 2, 4, 2, 8, 2, 6, 2, 6, 4, 4, 4, 10, 2, 4, 4, 6, 2, 8, 4, 12, 2, 4, 4, 15, 4, 16, 14,
...,
the last terms in each row give A079500(n). The penultimate terms in the rows give 2*A079500(n-1). - _N. J. A. Sloane_, Mar 05 2011
		

Crossrefs

A079500 is the subsequence a(2^k-1). - N. J. A. Sloane, Feb 23 2011
See A188548 for the sum of the divisors.

A080098 Triangle T(n,k) = n OR k, 0 <= k <= n, bitwise logical OR, read by rows.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 3, 3, 3, 4, 5, 6, 7, 4, 5, 5, 7, 7, 5, 5, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15, 8, 9, 9, 11, 11, 13, 13, 15, 15, 9, 9, 10, 11, 10, 11, 14, 15, 14, 15, 10, 11, 10, 11, 11, 11, 11, 15, 15, 15, 15, 11, 11, 11, 11, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Examples

			Triangle begins:
   0,
   1,  1,
   2,  3,  2,
   3,  3,  3,  3,
   4,  5,  6,  7,  4,
   5,  5,  7,  7,  5,  5,
   6,  7,  6,  7,  6,  7,  6,
   7,  7,  7,  7,  7,  7,  7,  7,
   8,  9, 10, 11, 12, 13, 14, 15,  8,
   9,  9, 11, 11, 13, 13, 15, 15,  9,  9,
  10, 11, 10, 11, 14, 15, 14, 15, 10, 11, 10,
  ...
		

Crossrefs

Cf. A001316 (number of integers k such that T(n, k) = n in n-th row).
Cf. A350093 (row sums), A003986 (array).
Other triangles: A080099 (AND), A051933 (XOR), A265705 (IMPL), A102037 (CNIMPL).

Programs

  • Haskell
    import Data.Bits ((.|.))
    a080098 n k = n .|. k :: Int
    a080098_row n = map (a080098 n) [0..n]
    a080098_tabl = map a080098_row [0..]
    -- Reinhard Zumkeller, Aug 03 2014, Jul 05 2012
    
  • Mathematica
    T[n_, k_] := n ~BitOr~ k;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
  • Python
    def T(n, k): return n | k
    print([T(n, k) for n in range(13) for k in range(n+1)]) # Michael S. Branicky, Dec 01 2021

A269161 Formula for Wolfram's Rule 86 cellular automaton: a(n) = 4n XOR (2n OR n).

Original entry on oeis.org

0, 7, 14, 11, 28, 27, 22, 19, 56, 63, 54, 51, 44, 43, 38, 35, 112, 119, 126, 123, 108, 107, 102, 99, 88, 95, 86, 83, 76, 75, 70, 67, 224, 231, 238, 235, 252, 251, 246, 243, 216, 223, 214, 211, 204, 203, 198, 195, 176, 183, 190, 187, 172, 171, 166, 163, 152, 159, 150, 147, 140, 139, 134, 131, 448, 455, 462, 459
Offset: 0

Views

Author

Antti Karttunen, Feb 20 2016

Keywords

Comments

The sequence is injective: no value occurs more than once.
Fibbinary numbers (A003714) give all integers n>=0 for which a(n) = A048727(n) and for which a(n) = A269160(n).

Crossrefs

Cf. A265281 (iterates starting from 1).
Cf. also A048727, A269160.

Programs

Formula

a(n) = 4n XOR (2n OR n) = A003987(4*n, A003986(2*n, n)).
a(n) = 4*n XOR A163617(n).
Other identities. For all n >= 0:
a(2*n) = 2*a(n).
a(n) = A057889(A269160(A057889(n))). [Rule 86 is the mirror image of rule 30.]
Previous Showing 31-40 of 82 results. Next