cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A096618 Least k such that H(k) >= 10^n, where H(k) is the harmonic number Sum_{i=0..k} 1/i.

Original entry on oeis.org

1, 12367, 15092688622113788323693563264538101449859497
Offset: 1

Views

Author

Eric W. Weisstein, Jul 01 2004

Keywords

Comments

The next term is approx 1.10*10^434, which too large to include.
Except for the first term, identical to A082912.

Crossrefs

A074469 Least m such that Sigma-Composite-Harmonic series Sum_{k=1..m} 1/A000203(A002808(k)) >= n.

Original entry on oeis.org

32, 301, 2123, 13172, 76105, 420007, 2245009, 11719362, 60071831, 303487314, 1515211979
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(m,s=0.);for(c=4,(2*n+2)^(n+2),if(isprime(c),next,m++);s+=1/sigma(c);if(s>=n,return(m))) \\ Charles R Greathouse IV, Feb 19 2013

Extensions

a(6)-a(11) from Donovan Johnson, Aug 22 2011

A074470 Least m such that Phi-Composite-Harmonic series Sum_{k=1..m} 1/A000010(A002808(k)) >= n.

Original entry on oeis.org

2, 7, 16, 31, 60, 113, 205, 371, 663, 1176, 2069, 3631, 6341, 11039, 19159, 33164, 57287, 98763, 169967, 292061, 501165, 858892, 1470334, 2514423, 4295912, 7333264, 12508213, 21319360, 36312685, 61811287, 105152840, 178787270, 303829041, 516074615, 876190239
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/EulerPhi[c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Extensions

More terms from Lambert Klasen (lambert.klasen(AT)gmx.net), Jul 23 2005
a(30)-a(35) from Donovan Johnson, Aug 21 2011

A094229 Numbers n such that d(n) >= n-th harmonic number H(n)=sum_{i=1..n}1/i.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 126, 128, 130, 132
Offset: 1

Views

Author

Matthew Vandermast, May 29 2004

Keywords

Comments

A positive integer n belongs to the sequence if and only the number of its divisors (d(n)) is >= the average number of divisors, in the range from 1 through n, for all positive integers (H(n)).
Visible sharp bend on the graph around the 800th term occur where the n-th harmonic number exceeds 8. - Ivan Neretin, Oct 16 2016

Examples

			6 is in the sequence because the number of its divisors, 4, is greater than the 6th harmonic number, 1/1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 = 2.45.
		

Crossrefs

d(n)=A000005(n), H(n)=A001008(n)/A002805(n). See also A004080.

Programs

  • Mathematica
    ok[n_] := DivisorSigma[0, n] >= HarmonicNumber[n]; Select[ Range[132], ok] (* Jean-François Alcover, Sep 19 2011 *)

A226187 Least positive integer k such that 1 + 1/2 + ... + 1/k > n/3.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 11, 16, 22, 31, 43, 60, 83, 116, 162, 227, 316, 441, 616, 859, 1199, 1674, 2336, 3260, 4550, 6349, 8861, 12367, 17259, 24088, 33617, 46916, 65477, 91380, 127531, 177984, 248397, 346666, 483812, 675214, 942336, 1315136, 1835421, 2561536, 3574912, 4989191, 6962977, 9717617
Offset: 1

Views

Author

Clark Kimberling, May 30 2013

Keywords

Comments

Conjecture: a(n+1)/a(n) converges to 1.39...
This constant is probably exp(1/3) = 1.395612425086089528628..., see A004080. - Ralf Stephan, Jun 03 2013

Examples

			a(10) = 16 because 1 + 1/2 + ... + 1/15 < 10/3 < 1 + 1/2 + ... + 1/16.
		

Crossrefs

Programs

  • Mathematica
    z = 32; f[n_] := 1/n; Do[s = 0; a[n] = NestWhile[# + 1 &, 1, ! (s += f[#]) >= n/3 &], {n, 1, z}]; m = Map[a, Range[z]]
  • PARI
    a(n)=local(s,k);s=0;k=1;while(s<=n/3,s=s+1/k;k++);k-1

Extensions

More terms from Jean-François Alcover, Jun 05 2013
Deleted obsolete b-file. - N. J. A. Sloane, Jan 04 2019

A258255 Least k such that n <= Sum_{i=1..k} 1/A258252(i), where A258252 are the numbers having lowest possible denominators for the sums of reciprocals.

Original entry on oeis.org

1, 4, 14, 46, 153, 535, 1855, 6449, 22460, 81237
Offset: 1

Views

Author

Ivan Neretin, May 24 2015

Keywords

Comments

Presumably, every natural number is reached at some step exactly, rather than "stepped over" (as is the case with harmonic series).

Examples

			For the first few terms of A258252, the sums of their reciprocal are: 1, 3/2, 5/3, 2, 9/4, 7/3, 12/5, 5/2, 18/7, 13/5, 14/5, 17/6, 20/7, 3, ... that are equal to 1, 2, 3 for n=1, 4, 14. So a(1)=1, a(2)=4, a(3)=14.
		

Crossrefs

Cf. A258252, A004080 (analog for harmonic series), A002387.

A078141 a(n) = floor(exp(n - gamma)), where gamma is Euler's constant.

Original entry on oeis.org

0, 1, 4, 11, 30, 83, 226, 615, 1673, 4549, 12366, 33616, 91380, 248397, 675213, 1835420, 4989191, 13562027, 36865412, 100210580, 272400600, 740461601, 2012783315, 5471312310, 14872568831, 40427833596, 109894245428
Offset: 0

Views

Author

Michael Somos, Nov 20 2002

Keywords

Comments

For any fixed real value x > 0 let u(1) = 1 and u(n) = u(n-1) - x*sign(u(n-1))/n. Then the series S(x) = Sum_{k>=1} u(k) converges and has value S(x) = x*floor(exp(1/x + gamma - 1)) - x - 1 where gamma = 0.5772... is the Euler gamma constant. Thus for n >= 0 a(n+1) = n*S(1/n) + n + 1.
From Gerhard Kirchner, May 02 2020: (Start)
It is interesting to compare T(x)=exp(x-gamma) and G(x)=[T(x)] with F(x)= index k of the harmonic sequence H(k) such that H(k) is closest to x. More exactly: For H(k-1)=x1, where x1=H(k)-1/(2k) is the point of dicontinuity. Harmonic sequence: H(0)=0 and H(k)=H(k-1)+1/k for k>0 with the asymptotic formula H(k)=log(k)+gamma+1/(2k)-1/(12k^2)+O(1/k^4).
G(x) has a point of dicontinuity x2=x1+1/(12k^2), which can be derived from T(x2)=k and the asymptotic formula. Within the "critical" section x1
What about n>200? Let x1
Regarding the difference as a random number between 0 and 1 and considering the exponential increase of T(n), it is unlikely that any n is located in a critical section.
(End)

Crossrefs

Programs

  • PARI
    a(n)=if(n<0,0,floor(exp(n-Euler)))

A168214 Least k such that Sum_{i=n..k} 1/i >= n.

Original entry on oeis.org

1, 11, 51, 192, 669, 2222, 7135, 22374, 68916, 209348, 628916, 1872269, 5531641, 16238866, 47410139, 137758585, 398617683, 1149205715, 3302324374, 9461757569, 27038402095, 77082571383, 219276117983, 622541323482, 1764242459656
Offset: 1

Author

Zhining Yang, Nov 20 2009

Keywords

Examples

			1/2 + 1/3 + ... + 1/10 < 2, but 1/2 + 1/3 + ... + 1/11 >= 2, so a(2) = 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := k /. FindRoot[Sum[1/i, {i, n, k}] == n, {k, n*E^n}, WorkingPrecision -> 32] // Ceiling; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jun 08 2013 *)
  • PARI
    a(n)=my(k=n,s);while((s+=1./k)Charles R Greathouse IV, Jun 17 2013
  • VBA
    Sub Harmonic_number_sum()
    Dim s As Double, i As Long, j As Long, n As Long
    For n = 1 To 15
      s = 0
      For i = n To 1000000000
        s = s + 1 / i
        If s >= n Then Exit For
      Next
    Debug.Print "a(" & n & ")=" & i:
    Next
    End Sub
    

Extensions

a(18)-a(25) from Donovan Johnson, Jun 19 2010
Example edited by Jon E. Schoenfield, Dec 20 2014

A231405 Least integer j such that Sum_{i=1..j} 1/i^(1/3) >= n.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 10, 12, 15, 17, 20, 23, 25, 28, 32, 35, 38, 41, 45, 49, 52, 56, 60, 64, 68, 72, 76, 81, 85, 89, 94, 98, 103, 108, 113, 117, 122, 127, 132, 138, 143, 148, 153, 159, 164, 170, 175, 181, 187, 192, 198, 204, 210, 216, 222, 228, 234, 240, 247, 253
Offset: 0

Author

Carmine Suriano, Nov 08 2013

Keywords

Examples

			a(7)=12 since Sum_{i=1..12} 1/i^(1/3) = 7.106248... and Sum_{i=1..11} 1/i^(1/3) = 6.669458... .
		

Crossrefs

Cf. A004080, A054040, A054041 (condition >n).
Cf. A067086.

Programs

  • JavaScript
    s=0;n=1;
    for (i=1;i<30;i++) {
    s+=1/Math.pow(i,1/3);
    if (s>=n) {n++;document.write(Math.floor(i)+", ");}
    }
  • Mathematica
    s = 0; i = 0; Table[i++; While[s = s + 1/(i^(1/3)); s < n, i++]; i, {n, 100}] (* T. D. Noe, Nov 09 2013 *)
    Module[{nn=300,c},c=Accumulate[1/Surd[Range[nn],3]];Table[Position[ c,?(#>=n&),1,1],{n,0,60}]]//Flatten (* _Harvey P. Dale, Aug 14 2021 *)

Extensions

a(0) added by Jon Perry, Nov 10 2013

A339061 Least integer j such that H(k+j)>=n+1, where k is the least integer to satisfy H(k)>=n, and H(k) is the sum of the first k terms of the harmonic series.

Original entry on oeis.org

1, 3, 7, 20, 52, 144, 389, 1058, 2876, 7817, 21250, 57763, 157017, 426817, 1160207, 3153770, 8572836, 23303385, 63345169, 172190019, 468061001, 1272321714, 3458528995, 9401256521, 25555264765, 69466411833, 188829284972, 513291214021
Offset: 0

Author

Matthew J. Bloomfield, Dec 21 2020

Keywords

Examples

			Define H(0)=0, H(k) = Sum_{i=1..k} 1/i for k=1,2,3,...
a(0)=1: To reach n+1 from n=0 requires 1 additional term of the harmonic partial sum: H(0+1) = H(0) + 1/1 = H(1) = 1.
a(1)=3: To reach n+1 from n=1 requires 3 additional terms of the harmonic partial sum: H(1+3) = H(1) + 1/(1+1) + 1/(1+2) + 1/(1+3) = H(4) = 2.08333....
a(2)=7: To reach n+1 from n=2 requires 7 additional terms of the harmonic partial sum: H(4+7) = H(4) + 1/(4+1) + 1/(4+2) + ... + 1/(4+6) + 1/(4+7) = H(11) = 3.01987....
a(3)=20: To reach n+1 from n=3 requires 20 additional terms of the harmonic partial sum: H(11+20) = H(11) + 1/(11+1) + 1/(11+2) + ... + 1/(11+19) + 1/(11+20) = H(31) = 4.02724....
		

Crossrefs

First differences of A004080.
Cf. A001113 (e), A001620 (gamma).
Cf. A001008/A002805 (harmonic numbers).
Some sequences in the same spirit as this: A331028, A002387, A004080.

Programs

  • R
    #set size of search space
    Max=10000000
    #initialize sequence to empty
    seq=vector(length=0)
    #initialize partial sum to 0
    partialsum=0
    k=1
    n=1
    for(i in 1:Max){
       partialsum=partialsum+1/i
       if(partialsum>=n){
          seq=c(seq, k)
          k=0
          n=n+1
       }
       k=k+1
    }
    #print sequence numbers below Max
    seq

Formula

a(n) ~ (e-1)*e^(n-gamma), where e is Euler's number and gamma is the Euler-Mascheroni constant.
Conjecture: a(n) = floor(1/2 + e^(n-gamma+1)) - floor(1/2 + e^(n-gamma)) for n > 1 where e is Euler's number and gamma is the Euler-Mascheroni constant. - Adam Hugill, Nov 06 2022
Previous Showing 21-30 of 31 results. Next