cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 587 results. Next

A278328 Numbers n such that abs(n - rev(n)) is a square, where rev(n) is the decimal reverse of n (A004086).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 21, 22, 23, 26, 32, 33, 34, 37, 40, 43, 44, 45, 48, 51, 54, 55, 56, 59, 62, 65, 66, 67, 73, 76, 77, 78, 84, 87, 88, 89, 90, 95, 98, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262
Offset: 1

Views

Author

Jonathan Frech, Nov 18 2016

Keywords

Comments

All palindromes are in this sequence, hence it is infinite.

Crossrefs

A002113 is a subsequence.

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, -1, a(n-1)) while not issqr(abs(k-(s->
           parse(cat(s[-i]$i=1..length(s))))(""||k))) do od: k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 18 2016
  • Mathematica
    Select[Range@ 262, IntegerQ@ Sqrt@ Abs[# - FromDigits@ Reverse@ IntegerDigits@ #] &] (* Michael De Vlieger, Nov 18 2016 *)
  • PARI
    is(n) = issquare(abs(n - eval(concat(Vecrev(Str(n)))))) \\ Felix Fröhlich, Nov 18 2016
    
  • PARI
    is(n, {b=10}) = issquare(abs(n - subst(Polrev(digits(n, b),'x),'x,b))); \\ Gheorghe Coserea, Nov 27 2016
  • Python
    import math
    n = 0
    while True:
        if math.sqrt(abs(n-int(str(n)[::-1])))%1 == 0:
            print(n)
        n += 1 # Jonathan Frech, Nov 18 2016
    

A062390 Numbers k such that (k + R(k)) / (k - R(k)) = +-11 where R(k) is the digit reversal of k (A004086).

Original entry on oeis.org

45, 54, 495, 594, 4545, 4995, 5454, 5994, 45045, 49995, 54054, 59994, 450045, 454545, 495495, 499995, 540054, 545454, 594594, 599994, 4500045, 4549545, 4950495, 4999995, 5400054, 5459454, 5940594, 5999994, 45000045, 45045045
Offset: 1

Views

Author

Amarnath Murthy, Jun 27 2001

Keywords

Comments

Are there numbers for which (k + R(k)) / (k - R(k)) is a number other than 11?

Examples

			(5994 + 4995) /(5994 - 4995) = 10989/999 = 11, so 5994 is in the sequence.
		

Programs

  • Mathematica
    dr11Q[n_]:=Module[{dr=FromDigits[Reverse[IntegerDigits[n]]]},n!=dr && Abs[(n+dr)/(n-dr)]==11]; Select[Range[45100000],dr11Q] (* Harvey P. Dale, Oct 03 2011 *)
  • PARI
    { n=0; for (m=1, 10^9, x=m; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); if ((m + r) == 11*abs(m - r), write("b062390.txt", n++, " ", m); if (n==44, break)) ) } \\ Harry J. Smith, Aug 07 2009

Extensions

Corrected formula and more terms from Jason Earls, Jun 29 2001
Definition corrected and incorrect formula deleted by Harry J. Smith, Aug 06 2009
Missing terms adding like a(5) = 4545 by Harry J. Smith, Aug 07 2009

A068159 a(n) = floor[ n/R(n) ], where R(n) (A004086) = Digit reversal of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 10, 2, 1, 1, 1, 0, 0, 0, 0, 0, 10, 3, 2, 1, 1, 1, 0, 0, 0, 0, 10, 3, 2, 1, 1, 1, 1, 0, 0, 0, 10, 4, 2, 1, 1, 1, 1, 1, 0, 0, 10, 4, 2, 2, 1, 1, 1, 1, 1, 0, 10, 4, 3, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amarnath Murthy, Feb 24 2002

Keywords

Examples

			a(61) = floor[61 / 16] = 3.
		

Programs

  • Mathematica
    Reversal = ToExpression @ StringReverse @ ToString[ # ] &; Table[ Floor[n/Reversal[n]], {n, 1, 100}]
    Table[Floor[n/IntegerReverse[n]],{n,100}] (* Harvey P. Dale, Mar 24 2025 *)

Extensions

Edited by Robert G. Wilson v, Mar 02 2002

A072017 Numbers k such that gcd(k, reverse(k)) = 81 = 3^4, where reverse(x) = A004086(x).

Original entry on oeis.org

2899999989, 2989999899, 2999889999, 3799999899, 3898989999, 3899799999, 3899999988, 3979989999, 3988899999, 3989999898, 3989999979, 3998999889, 3999889998, 3999898989, 3999899799, 3999979989, 3999988899, 4699998999
Offset: 1

Views

Author

Labos Elemer, Jun 05 2002

Keywords

Comments

Numerous solutions can be constructed by inserting strings of suitable digits between digits of terms in A071016.

Examples

			k = 3*3*3*3*3*449*64157 and reverse(k) = 2*2*3*3*3*3*31*67*14827, GCD = 81.
		

Crossrefs

A074163 Smallest k, not divisible by 10, such that R(k) > n*k, where R(k) is the digit reversal of k (A004086).

Original entry on oeis.org

12, 13, 15, 17, 19, 107, 108, 109
Offset: 1

Views

Author

Amarnath Murthy, Aug 30 2002

Keywords

Examples

			a(3) = 15, 51 > 3*15, a(3) is not 14 as 41 < 42 = 3*14.
		

Crossrefs

Cf. A074164.

A074813 Number of primes between n and R(n) (inclusive), where R(n) (A004086) is the digit reversal of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 0, 0, 4, 1, 3, 6, 7, 9, 12, 14, 15, 17, 8, 3, 0, 3, 4, 6, 9, 11, 13, 15, 9, 6, 3, 0, 3, 5, 7, 10, 11, 12, 10, 7, 4, 3, 0, 2, 4, 7, 8, 9, 13, 9, 6, 5, 2, 0, 2, 5, 7, 8, 14, 12, 9, 7, 4, 2, 0, 3, 4, 5, 16, 14, 11, 10, 7, 5, 3, 0, 2, 4, 18, 15, 13, 11, 8, 7, 4, 2, 0, 2, 20, 17
Offset: 1

Views

Author

Jason Earls, Sep 08 2002

Keywords

Comments

A060568 is the exclusive version of this sequence.

Examples

			The primes between n = 13 and 31, inclusive, are 13, 17, 19, 23, 29, 31; so a(13) = 6.
		

A074858 a(n) = a(n-1) + a(n-2) + R(a(n-3)) where a(0) = a(1) = a(2) = 1 and R(n) (A004086) means the reverse of n.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 57, 159, 229, 463, 1643, 3028, 5035, 11524, 24762, 41591, 108864, 177197, 305575, 951573, 2048919, 3575995, 6000073, 18774470, 30770296, 53244772, 91462849, 213915324, 333122408, 641864151, 1398505871, 2844591355
Offset: 0

Views

Author

Felice Russo, Sep 11 2002

Keywords

Examples

			a(9) = 57 + 31 + R(17) = 57 + 31 + 71 = 159.
		

Crossrefs

Cf. A000213.

Programs

  • Maple
    R:=proc(n) local nn, nnn: nn:=convert(n,base,10): add(nn[nops(nn)+1-j]*10^(j-1),j=1..nops(nn)) end: a[0]:=1: a[1]:=1: a[2]:=1: for n from 3 to 34 do a[n]:=a[n-1]+a[n-2]+R(a[n-3]) od: seq(a[n],n=0..34); # Emeric Deutsch, Jul 25 2005
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==a[n-1]+a[n-2]+IntegerReverse[ a[n-3]]},a,{n,40}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 05 2020 *)

Extensions

More terms from Emeric Deutsch, Jul 25 2005

A074860 a(n) = a(n-1) + R(a(n-2)) + R(a(n-3)) where a(0)=a(1)=a(2)=1 and R(k) = A004086(k) is the reverse of k.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 111, 195, 319, 1021, 2525, 4639, 11092, 25708, 64083, 173846, 292644, 979061, 2073724, 2680995, 7115676, 17380240, 30136219, 41109707, 136581181, 298634398, 550610143, 1625232666, 2859685613, 9863026929, 19691221772, 32153295043
Offset: 0

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= proc(n) option remember; `if`(n<3, 1,
          a(n-1) + R(a(n-2)) + R(a(n-3)))
        end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 17 2021

Extensions

Corrected and extended by David Garber, Oct 23 2002
Offset corrected by and more terms from Alois P. Heinz, Jun 17 2021

A074862 Iccanartet sequence: a(n)=R[a(n-1)]+R[a(n-2)]+R[a(n-3)]+R[a(n-4)] where a(1)=a(2)=a(3)=a(4)=1 and R(n) (A004086) is the reverse of n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 13, 43, 76, 139, 1063, 4633, 7963, 11593, 50173, 83677, 157951, 314005, 774907, 1447279, 11097082, 39016342, 62877022, 84245371, 91872178, 150920986, 815588944, 1243396636
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Cf. A000288.

Programs

  • Mathematica
    Transpose[NestList[Join[Rest[#],{Total[FromDigits/@(Reverse/@ (IntegerDigits/@#))]}]&,{1,1,1,1},30]][[1]] (* Harvey P. Dale, May 02 2012 *)

Extensions

More terms from David Garber, Oct 23 2002

A074863 a(n) = a(n-1) + a(n-2) + a(n-3) + R(a(n-4)) where a(0)=a(1)=a(2)=a(3)=1 and R(n) (A004086) is the reverse of n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 13, 25, 49, 94, 199, 394, 781, 1423, 3589, 6286, 11485, 24601, 52225, 95137, 230374, 388378, 766114, 1458025, 3085549, 6183571, 11138812, 25616473, 52394659, 90903760, 190798003, 371558074, 748909162, 1317996148, 2739360475, 5277120958
Offset: 0

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Cf. A000288.

Programs

Extensions

Corrected and extended by David Garber, Oct 23 2002
Previous Showing 61-70 of 587 results. Next