cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 587 results. Next

A074864 a(n) = a(n-1) + a(n-2) + R(a(n-3)) + R(a(n-4)) where a(1)=a(2)=a(3)=a(4)=1 and R(n) (A004086) is the reverse of n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 13, 25, 49, 112, 244, 502, 1051, 2206, 3904, 7816, 19243, 37174, 66697, 144349, 292510, 563698, 1879315, 3401746, 6192718, 15630610, 33434152, 63708721, 106919440, 197375245, 342218854, 597294436, 1527006682, 3125687152
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1, a[n]==a[n-1]+a[n-2]+ IntegerReverse[ a[n-3]]+IntegerReverse[a[n-4]]},a,{n,40}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 10 2017 *)

Extensions

More terms from Joshua Zucker, May 08 2006
Definition adapted to offset by Georg Fischer, Jun 18 2021

A074865 a(n) = a(n-1) + R(a(n-2)) + R(a(n-3)) + R(a(n-4)) where a(1) = a(2) = a(3) = a(4) = 1 and R(n) (A004086) is the reverse of n.

Original entry on oeis.org

1, 1, 1, 1, 4, 7, 13, 25, 67, 157, 316, 1195, 2635, 9910, 21796, 33268, 108541, 264685, 566431, 1384927, 2251855, 10267813, 23278831, 68031385, 119376340, 223452859, 339327088, 1399568407, 3282220573, 12169858759, 23849465446, 130434244321, 294426858097
Offset: 1

Views

Author

Felice Russo, Sep 11 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[1]=a[2]=a[3]=a[4]=1; R[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; a[n_]:=a[n-1]+R[a[n-2]]+R[a[n-3]]+R[a[n-4]]; Array[a,32] (* Stefano Spezia, Jun 14 2023 *)

Extensions

Corrected and extended by Michel ten Voorde Jun 13 2003
More terms from Joshua Zucker, May 08 2006
Definition adapted to offset by Georg Fischer, Jun 18 2021

A075605 Smallest k not a palindrome and not divisible by 10 such that k and R(k) (A004086) both are divisible by the n-th prime.

Original entry on oeis.org

24, 12, 5015, 168, 132, 1495, 1156, 2166, 3358, 2784, 1178, 1332, 1066, 13803, 1692, 2544, 13098, 27633, 6097, 67947, 10293, 103569, 13778, 19936, 22407, 1212, 21527, 20437, 10246, 22487, 141478, 1572, 100969, 15707, 15347, 72178, 39407, 336106
Offset: 1

Views

Author

Amarnath Murthy, Sep 28 2002

Keywords

Crossrefs

Extensions

More terms from David Wasserman, Jan 24 2005

A083447 a(n) = floor( n*R(n)/(n+R(n))), where R(n) is the digit reversal of n (A004086).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 0, 5, 7, 9, 10, 11, 12, 13, 14, 15, 1, 7, 11, 13, 15, 16, 18, 19, 20, 22, 2, 9, 13, 16, 18, 21, 22, 24, 26, 27, 3, 10, 15, 18, 22, 24, 26, 28, 30, 32, 4, 11, 16, 21, 24, 27, 30, 32, 34, 36, 5, 12, 18, 22, 26, 30, 33, 35, 37, 40, 6, 13, 19, 24, 28, 32, 35, 38, 41
Offset: 2

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 01 2003

Keywords

Examples

			a(17) = floor(17*71/(17+71)) = floor(1207/88) = 13.
		

Crossrefs

Cf. A004086.

Programs

  • Mathematica
    drev[n_]:=Module[{dr=FromDigits[Reverse[IntegerDigits[n]]]},Floor[ (dr*n)/ (dr+n)]]; Array[drev,80,2] (* Harvey P. Dale, Apr 26 2014 *)

Extensions

More terms from Jason Earls, May 23 2004

A103161 GCD of reverse(2^n) and reverse(2^(n+1)), where reverse(k) = A004086(k), the decimal representation of k read backwards.

Original entry on oeis.org

2, 4, 1, 1, 23, 1, 1, 1, 1, 4201, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 7, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 19, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jan 25 2005

Keywords

Examples

			n=10: GCD of backward written powers of 2 is GCD(4201, 8402) = 4201 = a(10).
		

Crossrefs

Programs

  • Mathematica
    rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[2^w], rd[2^(w+1)]], {w, 1, 100}]
    GCD[IntegerReverse[#[[1]]],IntegerReverse[#[[2]]]]&/@ Partition[ 2^Range[110],2,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2017 *)
  • PARI
    rev(n) = subst(Polrev(digits(n)), 'x, 10); \\ These two functions from Charles R Greathouse IV, Oct 20 2014
    A004094(n) = rev(2^n);
    A103161(n) = gcd(A004094(n),A004094(1+n)); \\ Antti Karttunen, Dec 07 2017

Formula

a(n) = gcd(A004094(n), A004094(n+1)).

A191221 Numbers k such that k plus the sum of the digits of k is prime, and R(k) plus the sum of the digits of k is prime, where R(k) = A004086(k).

Original entry on oeis.org

1, 10, 11, 19, 35, 37, 53, 59, 73, 91, 95, 100, 101, 143, 181, 218, 232, 250, 272, 296, 298, 323, 341, 343, 365, 383, 385, 418, 436, 454, 490, 509, 527, 547, 563, 583, 610, 634, 650, 656, 670, 692, 725, 727, 745, 749, 767, 787, 812, 814, 838, 850, 892, 905, 947, 949, 1009
Offset: 1

Views

Author

Carmine Suriano, May 27 2011

Keywords

Comments

Numbers ending with zero(s) when reversed have fewer digits.

Examples

			143 and 341 belong to the sequence since 143 + (1+4+3) = 151 is prime and 341 + (3+4+1) = 349 is also a prime.
		

Crossrefs

Programs

  • Maple
    read(transforms): isA191221 := proc(n) local r: r:=digrev(n): return (isprime(n+digsum(n)) and isprime(r+digsum(r))): end: A191221 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(isA191221(k))then return k: fi: od: end: seq(A191221(n),n=1..57); # Nathaniel Johnston, May 27 2011
  • Mathematica
    nrQ[n_]:=Module[{idn=IntegerDigits[n],t},t=Total[idn];And@@PrimeQ[{n+t, FromDigits[Reverse[idn]]+t}]]; Select[Range[1200],nrQ] (* Harvey P. Dale, Feb 24 2013 *)

A209915 Number of ways the n-th prime p(n) can be written as a multiple of its reversal A004086(p) +/- a prime q < p(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 4, 0, 3, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 4, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

M. F. Hasler, Mar 15 2012

Keywords

Comments

Sequence A209063 is a subsequence which contains all (but not only) nonzero terms.

Crossrefs

Cf. A209063.

Programs

  • PARI
    a(n)={my(r=A004086(n=prime(n))); sum(k=1, (2*n-1)\r, isprime(abs(n-k*r)))}

Formula

A232183 Primes p such that p-R(p) is a square, where R = reversal of digits = A004086.

Original entry on oeis.org

2, 3, 5, 7, 11, 43, 73, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929, 2141, 2251, 4253, 4363, 4583, 6701, 7211, 7321, 7541, 8147, 8923, 9103, 9323, 9433, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741
Offset: 1

Views

Author

M. F. Hasler, Nov 20 2013

Keywords

Comments

This sequence includes the palindromic primes for which p-R(p)=0. See A080177 = (43,73,2141,2251,4253,4363,...) for the variant not including palindromes.

Programs

  • PARI
    forprime(p=1,19999,issquare(p-A004086(p))&&print1(p","))

A257842 Semiprimes p*q such that R(p*q) = R(p)*R(q), where R = A004086 = reverse digits.

Original entry on oeis.org

4, 6, 9, 22, 26, 33, 39, 46, 55, 62, 69, 77, 82, 86, 93, 121, 143, 169, 187, 202, 206, 226, 253, 262, 299, 303, 309, 339, 341, 393, 422, 446, 451, 466, 473, 482, 505, 583, 622, 626, 633, 662, 669, 671, 699, 707, 781, 802, 842, 862, 866, 886, 933, 939, 961
Offset: 1

Views

Author

M. F. Hasler, May 11 2015

Keywords

Comments

A subsequence of A161600. Almost all terms with less than 4 digits are either multiples of 2 or 3 or of 11.

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    digrev:= proc(n) local L,i;
    L:= convert(n,base,10);
    add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    F:= proc(p,q) if digrev(p*q)=digrev(p)*digrev(q) then p*q else NULL fi end proc:
    sort([seq(seq(F(Primes[i],q), q = select(`<=`,Primes[i..-1],N/Primes[i])), i=1..nops(Primes))]); # Robert Israel, May 14 2015
  • Mathematica
    f[n_]:=FactorInteger[n][[1,1]];g[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Select[Range@1000,PrimeOmega[#]==2&&g[f[#]*#/f[#]]==g[f[#]]*g[#/f[#]]&] (* Ivan N. Ianakiev, May 14 2015 *)
  • PARI
    is(n)=bigomega(n)==2&&!eval(concat(Vecrev(Str(n"-"vecmin(n=factor(n)[,1])"*"vecmax(n)))))

A260874 Smallest prime of the form p//r//p//r//p//r// ...., where p = prime(n), r = A004086(p) and // denotes concatenation.

Original entry on oeis.org

1331133113, 17711771177117711771177117711771177117711771177117711771177117711771177117, 19911991199119, 23322332233223322332233223322332233223322332233223322332233223322332233223322332233223322332233223322332233223322332233223, 2992299229, 31133113311331
Offset: 6

Views

Author

Felix Fröhlich, Aug 02 2015

Keywords

Crossrefs

Programs

  • PARI
    a(n) = p=prime(n); r=eval(concat(Vecrev(Str(p)))); s=eval(Str(p, r)); i=0; while(!ispseudoprime(s), if(i%2==0, s=eval(Str(s, p)); i++, s=eval(Str(s, r)); i++)); s
Previous Showing 71-80 of 587 results. Next