cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A301921 Expansion of e.g.f. 1/(1 - (exp(x) - 1)/(1 - (exp(x) - 1)^2/(1 - (exp(x) - 1)^3/(1 - ...)))), a continued fraction.

Original entry on oeis.org

1, 1, 3, 19, 159, 1651, 21303, 324619, 5653119, 110909251, 2424648903, 58430418619, 1537673312079, 43860906193651, 1347852526593303, 44392923532503019, 1560023977386027039, 58259266750803410851, 2303999137417453606503, 96188099015599819297819, 4227325636692027926037999
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 19 2018

Keywords

Comments

From Peter Bala, Aug 19 2025: (Start)
Conjecture: Let k be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 9 we obtain the sequence [0, 1, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, 3, 1, 6, 4, 0, 7, ...] with an apparent period of 6 = phi(9) beginning at n = 2. Cf. A004123. (End)

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 159*x^4/4! + 1651*x^5/5! + 21303*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[1/(1 + ContinuedFractionK[-(Exp[x] - 1)^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    b[n_] := b[n] = SeriesCoefficient[1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, n}]), {x, 0, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k] k!, {k, 0, n}]; Table[a[n], {n, 0, 20}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k)*A005169(k)*k!.
a(n) ~ c * d^n * n!, where d = 2.19787763261059933075080498218168228... and c = 0.250957960982243982921501085974065... - Vaclav Kotesovec, Dec 20 2018

A354290 Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(3 - 2*exp(x)).

Original entry on oeis.org

1, 2, 14, 142, 1878, 30494, 585398, 12946910, 323717622, 9020101470, 276940926646, 9283709731806, 337237965060982, 13191050077634654, 552593521885522486, 24677110613547498718, 1169994350288769049334, 58684818937875321715038
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1)/(3-2*exp(x)))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A004123(k+1) * binomial(n-1,k-1) * a(n-k).
a(n) = Sum_{k=0..n} 2^k * A000262(k) * Stirling2(n,k).
a(n) ~ exp(1/(6*log(3/2)) - 5/6 + 2*sqrt(n)/sqrt(3*log(3/2)) - n) * (n^(n - 1/4) / (sqrt(2) * 3^(1/4) * log(3/2)^(n + 1/4))). - Vaclav Kotesovec, May 23 2022

A375948 Expansion of e.g.f. 1 / (3 - 2 * exp(x))^(3/2).

Original entry on oeis.org

1, 3, 18, 153, 1683, 22698, 362403, 6683463, 139787568, 3269240883, 84535585263, 2394699999948, 73749495626253, 2453332830142743, 87667856626175298, 3349116499958627733, 136209377351085310863, 5875794769594996985778, 267968680043585007829383
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=18; CoefficientList[Series[1 / (3 - 2 * Exp[x])^(3/2),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
  • PARI
    a001147(n) = prod(k=0, n-1, 2*k+1);
    a(n) = sum(k=0, n, a001147(k+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} A001147(k+1) * Stirling2(n,k).
a(n) ~ 2^(3/2) * n^(n+1) / (3^(3/2) * log(3/2)^(n + 3/2) * exp(n)). - Vaclav Kotesovec, May 20 2025

A238466 Generalized ordered Bell numbers Bo(9,n).

Original entry on oeis.org

1, 9, 171, 4869, 184851, 8772309, 499559571, 33190014069, 2520110222451, 215270320769109, 20431783142389971, 2133148392099721269, 242954208655633344051, 29977118969127060357909, 3983272698956314883956371, 567091857051921058649396469
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 9 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(10 - 9*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(10 - 9 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(10 - 9*exp(x)).
a(n) ~ n! / (10*(log(10/9))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 9*a(n-1) - 10*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A238467 Generalized ordered Bell numbers Bo(10,n).

Original entry on oeis.org

1, 10, 210, 6610, 277410, 14553010, 916146210, 67285818610, 5647734061410, 533307215001010, 55954905981282210, 6457903731351210610, 813080459351919805410, 110901542660769629769010, 16290196917457939734258210
Offset: 0

Views

Author

Vincenzo Librandi, Mar 18 2014

Keywords

Comments

Row 10 of array A094416, which has more information.

Crossrefs

Programs

  • Magma
    m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(11 - 10*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
  • Mathematica
    t=30; Range[0, t]! CoefficientList[Series[1/(11 - 10 Exp[x]), {x, 0, t}], x]

Formula

E.g.f.: 1/(11 - 10*exp(x)).
a(n) ~ n! / (11*(log(11/10))^(n+1)). - Vaclav Kotesovec, Mar 20 2014
a(0) = 1; a(n) = 10*a(n-1) - 11*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A305405 Expansion of Sum_{k>=0} k!!*x^k/Product_{j=1..k} (1 - j*x).

Original entry on oeis.org

1, 1, 3, 10, 41, 201, 1126, 7043, 48603, 366298, 2987189, 26163501, 244654150, 2430411335, 25539609327, 282834656434, 3290175964577, 40089424302657, 510340938343270, 6772086558823547, 93481666812344979, 1339885322519303434, 19907413622297965373, 306126204811557339045
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2018

Keywords

Comments

Stirling transform of A006882.

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember;
         `if`(n=0, doublefactorial(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    nmax = 23; CoefficientList[Series[Sum[k!! x^k/Product[1 - j x, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 23; CoefficientList[Series[1 + Exp[(E^x - 1)^2/2] (Exp[x] - 1) (1 + Sqrt[Pi/2] Erf[(Exp[x] - 1)/Sqrt[2]]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] k!!, {k, 0, n}], {n, 0, 23}]

Formula

E.g.f.: 1 + exp((exp(x) - 1)^2/2)*(exp(x) - 1)*(1 + sqrt(Pi/2)*erf((exp(x) - 1)/sqrt(2))).
a(n) = Sum_{k=0..n} Stirling2(n,k)*k!!.

A367486 Expansion of e.g.f. 1/(3 - 2*exp(x))^x.

Original entry on oeis.org

1, 0, 4, 18, 168, 1830, 24540, 388122, 7084560, 146650446, 3395460900, 86962122786, 2441210321880, 74542218945558, 2459830123779756, 87236196407090730, 3308881779086345760, 133667058288336876894, 5729380391745420070068
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 2^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A367489(k) * binomial(n-1,k-1) * a(n-k).

A368319 Expansion of e.g.f. exp(2*x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 4, 22, 166, 1642, 20254, 299722, 5174446, 102094042, 2266154014, 55890234922, 1516265078926, 44874837768442, 1438774580904574, 49678366226498122, 1837828899444250606, 72522300447277154842, 3040654011774599283934, 134985159308312666889322
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=2, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 2^n + 2 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (9/4)*A004123(n+1) - (1/2)*(1 + (3/2)*0^n).

A368320 Expansion of e.g.f. exp(3*x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 5, 31, 245, 2455, 30365, 449551, 7761605, 153140935, 3399230765, 83835351871, 2274397617365, 67312256650615, 2158161871352765, 74517549339738991, 2756743349166359525, 108783450670915699495, 4560981017661898860365, 202477738962469000202911
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=3, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 3^n + 2 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (27/8)*A004123(n+1) - (1/2)*(2^n + 3/2 + (9/4)*0^n).

A368321 Expansion of e.g.f. exp(4*x) / (3 - 2*exp(x)).

Original entry on oeis.org

1, 6, 42, 354, 3642, 45426, 673962, 11641314, 229708122, 5098836306, 125752998282, 3411596337474, 100968384710202, 3237242806231986, 111776324007217002, 4135115023742364834, 163175176006352025882, 6841471526492783720466, 303716608443703306594122
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=4, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 4^n + 2 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (81/16)*A004123(n+1) - (1/2)*(3^n + (3/2)*2^n + 9/4 + (27/8)*0^n).
Previous Showing 31-40 of 54 results. Next