A301921
Expansion of e.g.f. 1/(1 - (exp(x) - 1)/(1 - (exp(x) - 1)^2/(1 - (exp(x) - 1)^3/(1 - ...)))), a continued fraction.
Original entry on oeis.org
1, 1, 3, 19, 159, 1651, 21303, 324619, 5653119, 110909251, 2424648903, 58430418619, 1537673312079, 43860906193651, 1347852526593303, 44392923532503019, 1560023977386027039, 58259266750803410851, 2303999137417453606503, 96188099015599819297819, 4227325636692027926037999
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 159*x^4/4! + 1651*x^5/5! + 21303*x^6/6! + ...
-
nmax = 20; CoefficientList[Series[1/(1 + ContinuedFractionK[-(Exp[x] - 1)^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
b[n_] := b[n] = SeriesCoefficient[1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, n}]), {x, 0, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k] k!, {k, 0, n}]; Table[a[n], {n, 0, 20}]
A354290
Expansion of e.g.f. exp(f(x) - 1) where f(x) = 1/(3 - 2*exp(x)).
Original entry on oeis.org
1, 2, 14, 142, 1878, 30494, 585398, 12946910, 323717622, 9020101470, 276940926646, 9283709731806, 337237965060982, 13191050077634654, 552593521885522486, 24677110613547498718, 1169994350288769049334, 58684818937875321715038
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(2*(exp(x)-1)/(3-2*exp(x)))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, sum(k=0, j, 2^k*k!*stirling(j, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
A375948
Expansion of e.g.f. 1 / (3 - 2 * exp(x))^(3/2).
Original entry on oeis.org
1, 3, 18, 153, 1683, 22698, 362403, 6683463, 139787568, 3269240883, 84535585263, 2394699999948, 73749495626253, 2453332830142743, 87667856626175298, 3349116499958627733, 136209377351085310863, 5875794769594996985778, 267968680043585007829383
Offset: 0
-
nmax=18; CoefficientList[Series[1 / (3 - 2 * Exp[x])^(3/2),{x,0,nmax}],x]*Range[0,nmax]! (* Stefano Spezia, Sep 03 2024 *)
-
a001147(n) = prod(k=0, n-1, 2*k+1);
a(n) = sum(k=0, n, a001147(k+1)*stirling(n, k, 2));
A238466
Generalized ordered Bell numbers Bo(9,n).
Original entry on oeis.org
1, 9, 171, 4869, 184851, 8772309, 499559571, 33190014069, 2520110222451, 215270320769109, 20431783142389971, 2133148392099721269, 242954208655633344051, 29977118969127060357909, 3983272698956314883956371, 567091857051921058649396469
Offset: 0
-
m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(10 - 9*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
-
t=30; Range[0, t]! CoefficientList[Series[1/(10 - 9 Exp[x]), {x, 0, t}], x]
A238467
Generalized ordered Bell numbers Bo(10,n).
Original entry on oeis.org
1, 10, 210, 6610, 277410, 14553010, 916146210, 67285818610, 5647734061410, 533307215001010, 55954905981282210, 6457903731351210610, 813080459351919805410, 110901542660769629769010, 16290196917457939734258210
Offset: 0
-
m:=20; R:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(11 - 10*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]];
-
t=30; Range[0, t]! CoefficientList[Series[1/(11 - 10 Exp[x]), {x, 0, t}], x]
A305405
Expansion of Sum_{k>=0} k!!*x^k/Product_{j=1..k} (1 - j*x).
Original entry on oeis.org
1, 1, 3, 10, 41, 201, 1126, 7043, 48603, 366298, 2987189, 26163501, 244654150, 2430411335, 25539609327, 282834656434, 3290175964577, 40089424302657, 510340938343270, 6772086558823547, 93481666812344979, 1339885322519303434, 19907413622297965373, 306126204811557339045
Offset: 0
-
b:= proc(n, m) option remember;
`if`(n=0, doublefactorial(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23); # Alois P. Heinz, Aug 04 2021
-
nmax = 23; CoefficientList[Series[Sum[k!! x^k/Product[1 - j x, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
nmax = 23; CoefficientList[Series[1 + Exp[(E^x - 1)^2/2] (Exp[x] - 1) (1 + Sqrt[Pi/2] Erf[(Exp[x] - 1)/Sqrt[2]]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] k!!, {k, 0, n}], {n, 0, 23}]
A367486
Expansion of e.g.f. 1/(3 - 2*exp(x))^x.
Original entry on oeis.org
1, 0, 4, 18, 168, 1830, 24540, 388122, 7084560, 146650446, 3395460900, 86962122786, 2441210321880, 74542218945558, 2459830123779756, 87236196407090730, 3308881779086345760, 133667058288336876894, 5729380391745420070068
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 2^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])); v;
A368319
Expansion of e.g.f. exp(2*x) / (3 - 2*exp(x)).
Original entry on oeis.org
1, 4, 22, 166, 1642, 20254, 299722, 5174446, 102094042, 2266154014, 55890234922, 1516265078926, 44874837768442, 1438774580904574, 49678366226498122, 1837828899444250606, 72522300447277154842, 3040654011774599283934, 134985159308312666889322
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=2, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
A368320
Expansion of e.g.f. exp(3*x) / (3 - 2*exp(x)).
Original entry on oeis.org
1, 5, 31, 245, 2455, 30365, 449551, 7761605, 153140935, 3399230765, 83835351871, 2274397617365, 67312256650615, 2158161871352765, 74517549339738991, 2756743349166359525, 108783450670915699495, 4560981017661898860365, 202477738962469000202911
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=3, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
A368321
Expansion of e.g.f. exp(4*x) / (3 - 2*exp(x)).
Original entry on oeis.org
1, 6, 42, 354, 3642, 45426, 673962, 11641314, 229708122, 5098836306, 125752998282, 3411596337474, 100968384710202, 3237242806231986, 111776324007217002, 4135115023742364834, 163175176006352025882, 6841471526492783720466, 303716608443703306594122
Offset: 0
-
b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
a(n, m=4, t=2) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);
Comments