cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 190 results. Next

A197601 G.f.: exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 *x^k] *x^n/n ).

Original entry on oeis.org

1, 1, 5, 14, 52, 187, 708, 2734, 10758, 43004, 174004, 711660, 2936564, 12211688, 51124185, 215299685, 911445413, 3876523626, 16556573129, 70980163570, 305343924258, 1317634326631, 5702146948069, 24741071869651, 107608326588838, 469073933764287
Offset: 0

Views

Author

Paul D. Hanna, Oct 20 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 14*x^3 + 52*x^4 + 187*x^5 + 708*x^6 +...
The logarithm of the g.f. begins:
log(A(x)) = x + 9*x^2/2 + 28*x^3/3 + 121*x^4/4 + 496*x^5/5 + 2100*x^6/6 + 9017*x^7/7 + 38969*x^8/8 +...+ A198059(n)*x^n/n +...
and equals the sum of the series:
log(A(x)) = (1 + 2^2*x + x^2)*x
+ (1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)*x^2/2
+ (1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)*x^3/3
+ (1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)*x^4/4
+ (1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)*x^5/5 +...
which involves the squares of the coefficients in even powers of (1+x).
The logarithm of the g.f. can also be expressed as:
log(A(x)) = (1-x)^5*(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 15^2*x^4 +...)*x
+ (1-x)^9*(1 + 5^2*x + 15^2*x^2 + 35^2*x^3 + 70^2*x^4 +...)*x^2/2
+ (1-x)^13*(1 + 7^2*x + 28^2*x^2 + 84^2*x^3 + 210^2*x^4 +...)*x^3/3
+ (1-x)^17*(1 + 9^2*x + 45^2*x^2 + 165^2*x^3 + 495^2*x^4 +...)*x^4/4
+ (1-x)^21*(1 + 11^2*x + 66^2*x^2 + 286^2*x^3 + 1001^2*x^4 +...)*x^5/5 +...
which involves the squares of the coefficients in odd powers of 1/(1-x).
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Exp[Sum[Hypergeometric2F1[-2*k, -2*k, 1, x]*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 29 2022 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, n, binomial(2*m,k)^2 *x^k) *x^m/m)+x*O(x^n)), n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, (1-x+x*O(x^n))^(4*m+1) *sum(k=0, n-m+1, binomial(2*m+k, k)^2 *x^k+x*O(x^n)) *x^m/m)+x*O(x^n)), n)}

Formula

G.f.: exp( Sum_{n>=1} (1-x)^(4*n+1) *[Sum_{k>=0} C(2*n+k,k)^2 *x^k] *x^n/n ).
Logarithmic derivative equals A198059.

A202845 Triangle read by rows: T(n,k) is the number of secondary structures of size n having k stacks of odd length (n>=0, k>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 6, 4, 10, 3, 7, 16, 14, 11, 30, 40, 1, 17, 62, 90, 16, 28, 126, 184, 85, 49, 241, 384, 295, 9, 87, 444, 839, 808, 105, 152, 820, 1845, 1960, 594, 2, 262, 1547, 3938, 4581, 2331, 76, 453, 2957, 8134, 10731, 7326, 771, 794, 5636, 16529, 25110, 20204, 4529, 30
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Sum of entries in row n is A004148 (the secondary structure numbers).
Sum(k*T(n,k), k>=0)=A202846(n).
T(n,0)=A023427(n).

Examples

			Row 5 is 2,6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, ABVBA, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv; except for the first two, each has 1 stack of length 1.
Triangle starts:
1;
1;
1;
1,1;
1,3;
2,6;
4,10,3;
7,16,14;
		

Crossrefs

Programs

  • Maple
    f := (t*z^2+z^4)/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 20)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (tz^2 + z^4)/(1-z^4).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + (f/(1 + f))H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .

A202846 Number of stacks of odd length in all 2ndary structures of size n.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 16, 44, 113, 290, 749, 1930, 4966, 12776, 32870, 84577, 217665, 560328, 1442893, 3716837, 9577805, 24689612, 63667585, 164239124, 423824628, 1094065998, 2825169786, 7297681867, 18856458451, 48737762624, 126007604078, 325873570924, 842982118807
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Number of stacks of even length in all 2ndary structures of size n+2.

Examples

			a(5)=6: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of odd length, respectively.
		

Crossrefs

Programs

  • Maple
    g := z^2*(1-z^2)*S*(S-1)/((1+z^2)*(1-z+z^2-2*z^2*S)): S := ((1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^2: gser := series(g, z = 0, 35): seq(coeff(gser, z, n), n = 0 .. 32);

Formula

a(n) = Sum(k*A202845(n,k), k>=0).
a(n) = Sum(k*A202848(n+2,k), k>=0).
a(n)+a(n-2) = A171854(n) (n>=2).
G.f.: g(z) = z^2*(1-z^2)^2*S(S - 1)/[(1+z^2)(1 - z + z^2 -2*z^2*S)], where S is defined by S = 1 + z*S + z^2*S(S-1) (the g.f. of the secondary structure numbers A004148).
Conjecture D-finite with recurrence +(n+2)*(13230*n^2-96611*n+147133)*a(n) +(-44206*n^3+292903*n^2-261197*n-341332)*a(n-1) +2*(17746*n^3-141629*n^2+231187*n+123600)*a(n-2) +2*(-26460*n^3+157889*n^2-64195*n-381418)*a(n-3) +2*(35492*n^3-320849*n^2+745453*n-240088)*a(n-4) +2*(-13230*n^3+98869*n^2-160610*n-79637)*a(n-5) +(48722*n^3-428591*n^2+982443*n-433110)*a(n-6) -(n-6)*(17746*n^2-68387*n+43705)*a(n-7)=0. - R. J. Mathar, Jul 26 2022

A202848 Triangle read by rows: T(n,k) is the number of secondary structures of size n having k stacks of even length (n>=0, k>=0).

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 1, 14, 3, 31, 6, 66, 16, 141, 44, 313, 107, 3, 702, 262, 14, 1577, 663, 43, 3581, 1654, 138, 8207, 4091, 436, 1, 18903, 10178, 1275, 16, 43770, 25339, 3638, 85, 101903, 62952, 10316, 331, 238282, 156495, 28743, 1228, 559322, 389374, 78979, 4320, 9
Offset: 0

Views

Author

Emeric Deutsch, Dec 26 2011

Keywords

Comments

For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.
Sum of entries in row n is A004148 (the secondary structure numbers).
Sum(k*T(n,k), k>=0) = A202846(n-2).
T(n,0) = A202849(n).

Examples

			Row 5 is 7,1: representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv; ABVBA; the last one has 1 stack of length 2.
Triangle starts:
1;
1;
1;
2;
4;
7,1;
14,3;
31,6;
		

Crossrefs

Programs

  • Maple
    f := (z^2+t*z^4)/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 19 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 19 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) satisfies G = 1 + zG + [f/(1 + f)]G(G-1), where f = (z^2 + t*z^4)/(1-z^4).
The multivariate g.f. H(z, t[1], t[2], ...) of secondary structures with respect to size (marked by z) and number of stacks of length j (marked by t[j]) satisfies H = 1 + zH + (f/(1 + f))H(H-1), where f = t[1]z^2 + t[2]z^4 + t[3]z^6 + ... .

A292460 Expansion of (1 - x - x^2 - sqrt((1 - x - x^2)^2 - 4*x^3))/(2*x^3) in powers of x.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2017

Keywords

Comments

Number of U_{k}D-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x-x^2 -Sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3))); // G. C. Greubel, Aug 13 2018
  • Mathematica
    CoefficientList[Series[(1-x-x^2 -Sqrt[(1-x-x^2)^2 -4*x^3])/(2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    x='x+O('x^50); Vec((1-x-x^2 -sqrt((1-x-x^2)^2 -4*x^3))/(2*x^3)) \\ G. C. Greubel, Aug 13 2018
    

Formula

G.f.: 1/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-x-x^2-x^3/(... (continued fraction).
a(n) = A004148(n+1).
a(n) ~ 5^(1/4) * phi^(2*n + 4) / (2*sqrt(Pi)*n^(3/2)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Sep 17 2017
D-finite with recurrence: (n+3)*a(n) +(-2*n-3)*a(n-1) -n*a(n-2) +(-2*n+3)*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020
a(0) = a(1) = 1; a(n) = a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3). - Ilya Gutkovskiy, Nov 09 2021

A365690 G.f. satisfies A(x) = 1 + x^2*A(x)^4 / (1 - x*A(x)).

Original entry on oeis.org

1, 0, 1, 1, 5, 10, 38, 101, 353, 1070, 3659, 11843, 40505, 135873, 468104, 1604375, 5576315, 19386656, 67950717, 238676813, 842797959, 2983745508, 10603445402, 37777263153, 134985354179, 483438728094, 1735527037388, 6243193190117, 22503637842423
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k-1, n-2*k)*binomial(n+2*k+1, k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1,n-2*k) * binomial(n+2*k+1,k) / (n+2*k+1).

A023425 Generalized Catalan numbers: a(0) = 1, a(n) = a(n-1) + Sum_{k=1..n-4} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 5, 13, 34, 90, 241, 652, 1780, 4899, 13581, 37893, 106340, 299978, 850187, 2419788, 6913658, 19822439, 57015620, 164476023, 475752469, 1379553027, 4009532279, 11678165796, 34081307147, 99646051271, 291845778020, 856147139606, 2515368741707, 7400713869808, 21803597196231
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of bargraphs of semiperimeter n-2 with no valleys of width 1 (i.e., no DHU configurations, where U=(0,1), H=(1,0), D=(0,-1)). Example: a(8) = 34 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only the one corresponding to the composition [2,1,2] has a valley of width 1. - Emeric Deutsch, Aug 11 2016

Crossrefs

Programs

  • Maple
    A023425 := proc(n)
        option remember;
        if n = 0 then
            1;
        else
            procname(n-1)+add(procname(k)*procname(n-k),k=1..n-4) ;
        end if;
    end proc: # R. J. Mathar, May 01 2015
  • Mathematica
    a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-k ], {k, 1, n-4} ];

Formula

The sequence a(n-3) (for n>=3) has the g.f. 1/G(0) where G(k) = 1 - q/(1 - q - q^2 - q^3 / G(k+1) ). - Joerg Arndt, Dec 06 2014
n*a(n) +2*(-2*n+3)*a(n-1) +2*(n-3)*a(n-2) +(2*n-9)*a(n-3) +(n-6)*a(n-4) +(2*n-15)*a(n-5) +(n-9)*a(n-6)=0. - R. J. Mathar, May 01 2015
G.f.: (3+z^2+z^3-sqrt((1-2*z-3*z^2-z^3)*(1-2*z+z^2-z^3)))/2. - Emeric Deutsch, May 24 2016
The g.f. g(x) satisfies g(x) = 1+x*g(x)+(g(x)-1)*(g(x)-x^3-x^2-x-1) and 3*x^5+5*x^4+7*x^3+6*x^2+2*x-3+(-3*x^5-5*x^4-2*x^3-3*x^2-2*x+2)*g(x)+(x^6+2*x^5+x^4+2*x^3+2*x^2-4*x+1)*g'(x). - Robert Israel, May 25 2016

A045829 Catafusenes (see reference for precise definition).

Original entry on oeis.org

0, 0, 0, 1, 12, 94, 612, 3605, 19992, 106644, 554184, 2827902, 14244120, 71073860, 352180920, 1736103460, 8525167680, 41741310400, 203929367040, 994680578505, 4845761001756, 23586190895078, 114731538098100, 557859491227841
Offset: 1

Views

Author

Keywords

Comments

The sequence without the initial 0's is the 4-fold convolution of A002212(n), n = 1,2,... . - Emeric Deutsch, Mar 13 2004
The 2-fold convolution of A045445 (apart from zeros). - R. J. Mathar, Aug 01 2019

Crossrefs

Formula

G.f.: (z*M)^4, where M = (1 - 3*z - sqrt(1-6*z+5*z^2))/(2*z^2). - Emeric Deutsch, Mar 13 2004
a(n) ~ 2 * 5^(n + 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, May 29 2022

Extensions

More terms from Emeric Deutsch, Mar 13 2004

A097100 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n containing k subwords of the type U H^j U or D H^j D for some j>0, where U=(1,1), H=(1,0) and D=(1,-1) (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 2, 28, 8, 1, 53, 24, 5, 102, 62, 21, 199, 152, 68, 4, 391, 366, 196, 24, 1, 773, 868, 531, 104, 7, 1537, 2032, 1393, 368, 43, 3075, 4694, 3593, 1172, 195, 6, 6189, 10732, 9120, 3528, 754, 48, 1, 12525, 24348, 22822, 10224, 2632, 272, 9
Offset: 0

Views

Author

Emeric Deutsch, Sep 15 2004

Keywords

Comments

Row sums are the RNA secondary structure numbers (A004148).
T(n,0)=A190160(n).
Sum(k*T(n,k),k>=0)=A190161(n).
The generating function G=G(t,s,z) relative to the number of subwords of the form uh^bu (marked by t) and dh^bd (marked by s) for a fixed b>=1, satisfies G = 1+zG+z^2*G[z/(1-z) + (w^2+twz^b+swz^b+tsz^{2b})H], where H=(1-z)[(1-z)G-1] and w = 1/(1-z) - z^b.

Examples

			Triangle starts:
  1;
  1;
  1;
  2;
  4;
  8;
  15,2;
  28,8,1;
  53,24,5;
  ...
It seems that, except for the first 3 rows, rows 4n-1, 4n, 4n+1 have 2n-1 terms and rows 4n+2 have 2n terms (n=1,2,...).
T(8,2)=5 because we have (UHU)H(DHD)H, (UHU)HH(DHD), H(UHU)H(DHD), (UHHU)H(DHD) and (UHU)H(DHHD); the required subwords are shown between parentheses.
		

Crossrefs

Programs

  • Maple
    eq := G = 1+z*G+z^2*G*(z+(1-z+t*z)^2*(G-z*G-1))/(1-z): G:= RootOf(eq,G): Gser := simplify(series(G,z=0,20)): for n from 0 to 19 do P[n] := sort(coeff(Gser,z,n)) end do: for n from 0 to 19 do seq(coeff(P[n],t,j), j=0 .. degree(P[n])) end do; # yields sequence in triangular form

Formula

G.f.: G=G(t, z) satisfies G=1+zG+z^2*G*[z+(1-z+t*z)^2*(G-zG-1)]/(1-z).

A097779 Number of Motzkin paths of length n, starting with an up step, ending with a down step and having no peaks (can be easily expressed using RNA secondary structure terminology).

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 5, 11, 25, 58, 135, 317, 750, 1785, 4272, 10275, 24823, 60210, 146576, 358010, 877087, 2154751, 5307166, 13102511, 32418806, 80375267, 199650310, 496803811, 1238276667, 3091173482, 7727893389, 19346109435, 48493869237
Offset: 0

Views

Author

Emeric Deutsch, Sep 11 2004

Keywords

Examples

			a(6)=5 because we have UHHHHD, UHDUHD, UUHHDD, UHUHDD and UUHDHD, where U=(1,1), D=(1,-1) and H=(1,0).
		

Crossrefs

Cf. A004148.

Programs

  • Maple
    G:=z+1/2*(1-z)^2/z^2*(1-z+z^2-sqrt(1-2*z-z^2-2*z^3+z^4)): Gser:=series(G,z=0,40): 1,seq(coeff(Gser,z^n),n=1..37);
  • Mathematica
    CoefficientList[Series[x+(1-x)^2 (1-x+x^2-Sqrt[1-2x-x^2-2x^3+x^4])/(2x^2),{x,0,40}],x] (* Harvey P. Dale, Dec 24 2016 *)

Formula

G.f. = z + (1-z)^2*[1-z+z^2-sqrt(1-2z-z^2-2z^3+z^4)]/(2z^2)
D-finite with recurrence (n+2)*a(n) -3*n*a(n-1) +(n-4)*a(n-2) +(-n+1)*a(n-3) +3*(n-5)*a(n-4) +(-n+7)*a(n-5)=0. - R. J. Mathar, Jul 26 2022
Previous Showing 71-80 of 190 results. Next