cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A085788 Partial sums of n 3-spaced triangular numbers beginning with t(3), e.g., a(2) = t(3)+t(6) = 6+21 = 27.

Original entry on oeis.org

6, 27, 72, 150, 270, 441, 672, 972, 1350, 1815, 2376, 3042, 3822, 4725, 5760, 6936, 8262, 9747, 11400, 13230, 15246, 17457, 19872, 22500, 25350, 28431, 31752, 35322, 39150, 43245, 47616, 52272, 57222, 62475, 68040, 73926, 80142, 86697, 93600, 100860, 108486
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Crossrefs

Row sums of triangle A001283.
Cf. A254407. - Bruno Berselli, Jan 30 2015

Programs

  • Maple
    a:=n->sum(sum(sum(j-k+1, j=1..n), k=0..n),m=0..n): seq(a(n), n=1..45); # Zerinvary Lajos, May 30 2007
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{6,27,72,150},50] (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    v=vector(40,i,i*(i+1)/2); s=0; forstep(i=3,40,3,s+=v[i]; print1(s","))

Formula

a(n) = (3/2)*n*(n+1)^2 = 3*A006002(n).
a(n) = Sum_{j=1..n} (j+n+1)*(n+1). - Zerinvary Lajos, Sep 10 2006
From Colin Barker, Mar 17 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: 3*x*(x+2)/(x-1)^4. (End)
E.g.f.: 3*exp(x)*x*(1 + x)*(4 + x)/2. - Elmo R. Oliveira, Aug 14 2025

Extensions

Edited and more terms from Michel Marcus, Mar 17 2014

A085789 Partial sums of n 3-spaced triangular numbers beginning with t(2), e.g., a(2) = t(2) + t(5) = 3 + 15 = 18.

Original entry on oeis.org

3, 18, 54, 120, 225, 378, 588, 864, 1215, 1650, 2178, 2808, 3549, 4410, 5400, 6528, 7803, 9234, 10830, 12600, 14553, 16698, 19044, 21600, 24375, 27378, 30618, 34104, 37845, 41850, 46128, 50688, 55539, 60690, 66150, 71928, 78033, 84474, 91260, 98400, 105903
Offset: 1

Views

Author

Jon Perry, Jul 23 2003

Keywords

Comments

Sums of rows of triangle A100345 (n>0).

Crossrefs

Programs

  • Magma
    [3/2*n^2*(n+1): n in [1..40]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    CoefficientList[Series[3 (1 + 2 x) / (1 - x)^4, {x, 0, 40}], x](* Vincenzo Librandi, Aug 14 2017 *)
    LinearRecurrence[{4,-6,4,-1},{3,18,54,120},50] (* Harvey P. Dale, May 14 2023 *)

Formula

a(n) = 3/2 * n^2*(n+1).
a(n) = 3*n*binomial(n+1,2) = 3*n*A000217(n) = 3*A002411(n). - Arkadiusz Wesolowski, Feb 10 2012
G.f.: 3*(x + 2*x^2)/(1 - x)^4. - Arkadiusz Wesolowski, Feb 11 2012
From Amiram Eldar, Jun 29 2025: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/9 - 2/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/18 - 4*log(2)/3 + 2/3. (End)

Extensions

More terms from Reinhard Zumkeller, Nov 18 2004

A195309 Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.

Original entry on oeis.org

1, 9, 11, 45, 39, 126, 94, 270, 185, 495, 321, 819, 511, 1260, 764, 1836, 1089, 2565, 1495, 3465, 1991, 4554, 2586, 5850, 3289, 7371, 4109, 9135, 5055, 11160, 6136, 13464, 7361, 16065, 8739, 18981, 10279, 22230, 11990, 25830, 13881
Offset: 1

Views

Author

Omar E. Pol, Sep 21 2011

Keywords

Comments

The integers in same rows of the source triangle have a property related to Euler's Pentagonal Theorem.
Note that the column 1 of the mentioned triangle gives the positive terms of A001318 (see example).

Examples

			a(1) = 1
a(2) = 2+3+4 = 9
a(3) = 5+6 = 11
a(4) = 7+8+9+10+11 = 45
a(5) = 12+13+14 = 39
a(6) = 15+16+17+18+19+20+21 = 126
a(7) = 22+23+24+25 = 94
a(8) = 26+27+28+29+30+31+32+33+34 = 270
a(9) = 35+36+37+38+39 = 185
		

Crossrefs

Cf. A026741, A195310, A195311, A004188 (bisection).

Programs

  • Maple
    A195309 := proc(n)
            (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32
    end proc:
    seq(A195309(n),n=1..60) ; # R. J. Mathar, Oct 08 2011
  • Mathematica
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* Harvey P. Dale, Jun 22 2015 *)

Formula

a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - R. J. Mathar, Oct 08 2011
G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - R. J. Mathar, Oct 08 2011

A236311 Riordan array ((1-x)/(1-3*x+3*x^2), x/(1-3*x+3*x^2)).

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 3, 15, 8, 1, 0, 33, 36, 11, 1, -9, 54, 117, 66, 14, 1, -27, 54, 297, 282, 105, 17, 1, -54, -27, 594, 945, 555, 153, 20, 1, -81, -297, 864, 2583, 2295, 963, 210, 23, 1, -81, -891, 513, 5778, 7803, 4725, 1533, 276, 26, 1, 0, -1863, -1944, 10098
Offset: 0

Views

Author

Philippe Deléham, Jan 21 2014

Keywords

Comments

Row sums are 3^n = A000244(n).
Diagonals sums are 2^n = A000079(n).
T(n,n) = A000012(n).
T(n+1,n) = A016789(n).
T(n+2,n) = A062741(n+1).
T(n+3,n) = 3*A004188(n+1).
T(n,0) = A057682(n+1).

Examples

			Triangle begins :
1;
2, 1;
3, 5, 1;
3, 15, 8, 1;
0, 33, 36, 11, 1;
-9, 54, 117, 66, 14, 1;
-27, 54, 297, 282, 105, 17, 1;
		

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) -3*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k<0 or if k>n.
Previous Showing 21-24 of 24 results.