cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A006507 a(n+1) = a(n) + sum of digits of a(n), with a(1)=7.

Original entry on oeis.org

7, 14, 19, 29, 40, 44, 52, 59, 73, 83, 94, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538, 554, 568
Offset: 1

Views

Author

Keywords

Comments

a(n) = A004207(n+4) for n > 11. - Reinhard Zumkeller, Oct 14 2013

References

  • Editorial Note, Popular Computing (Calabasas, CA), Vol. 4 (No. 37, Apr 1976), p. 12.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 36.
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006507 n = a006507_list !! (n-1)
    a006507_list = iterate a062028 7  -- Reinhard Zumkeller, Oct 14 2013
  • Mathematica
    NestList[#+Total[IntegerDigits[#]]&,7,50] (* Harvey P. Dale, Jan 25 2021 *)

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

Extensions

More terms from Robert G. Wilson v

A065075 Sum of digits of the sum of the preceding numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 10, 2, 4, 8, 7, 5, 10, 11, 13, 8, 16, 14, 19, 11, 13, 8, 7, 14, 10, 11, 13, 8, 7, 5, 10, 11, 13, 17, 16, 14, 10, 11, 13, 8, 16, 14, 19, 20, 13, 8, 16, 14, 19, 20, 13, 8, 16, 14, 19, 20, 22, 17, 16, 14, 19, 20, 13, 17, 16, 14, 19, 20, 13
Offset: 1

Views

Author

Bodo Zinser, Nov 09 2001

Keywords

Comments

This sequence has the same digital roots as A004207 (a(1) = 1, a(n) = sum of digits of all previous terms) and A001370 (Sum of digits of 2^n); the digital roots sequence ends in the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
The missing digital roots are precisely the multiples of 3. - Alexandre Wajnberg, Dec 28 2005
Conjecture: every non-multiple of 3 does appear in the sequence. - Franklin T. Adams-Watters, Jun 29 2009. See A230289. - N. J. A. Sloane, Oct 17 2013
a(n) = sum of digits of A004207(n). - N. J. A. Sloane, Oct 18 2013

Examples

			a(6) = 7 because a(1)+a(2)+a(3)+a(4)+a(5) = 16 and 7 = 1+6.
		

Crossrefs

Programs

  • Haskell
    a065075 n = a065075_list !! (n-1)
    a065075_list = 1 : 1 : f 2 where
       f x = y : f (x + y) where y = a007953 x
    -- Reinhard Zumkeller, Nov 13 2014
  • Maple
    read transforms;
    sp:=1;
    lprint(1,sp);
    s:=sp;
    for n from 2 to 10000 do
    sp:=digsum(s);
    lprint(n,sp);
    s:=s+sp;
    od:
    # N. J. A. Sloane, Oct 17 2013
  • PARI
    a065075(m) = local(a,j,s); a=1; print1(a,", "); s=a; for(j=1,m,a=sumdigits(s); print1(a,", "); s=s+a)
    a065075(80)
    

Formula

a(1) = 1, a(2) = 1, a(n) = sum of digits of (a(1)+a(2)+...+a(n-1)).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org) and Klaus Brockhaus, Nov 13 2001
Edited by Franklin T. Adams-Watters, Jun 29 2009

A047892 a(1) = 2; for n > 0, a(n+1) = a(n) * sum of digits of a(n).

Original entry on oeis.org

2, 4, 16, 112, 448, 7168, 157696, 5361664, 166211584, 5651193856, 276908498944, 19383594926080, 1298700860047360, 79220752462888960, 6733763959345561600, 592571228422409420800, 45035413360103115980800
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

a(n) mod 9 = A010712(n-1) for n > 1. - Reinhard Zumkeller, Sep 23 2007

Crossrefs

Cf. A004207.
Cf. A007953.
Cf. A047912 (start=3), A047897 (start=5), A047898 (start=6), A047899 (start=7), A047900 (start=8), A047901 (start=9), A047902 (start=11).

Programs

  • Haskell
    a047892 n = a047892_list !! (n-1)
    a047892_list = iterate a057147 2  -- Reinhard Zumkeller, Mar 19 2014
  • Mathematica
    NestList[# Total[IntegerDigits[#]]&,2,20] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n+1) = A057147(a(n)). - Reinhard Zumkeller, Mar 19 2014

Extensions

Offset changed by Reinhard Zumkeller, Mar 19 2014

A230099 a(n) = n + (product of digits of n).

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 50, 56, 62, 68, 74, 80, 86, 92, 98, 104, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 70, 78, 86, 94, 102, 110, 118, 126
Offset: 0

Views

Author

N. J. A. Sloane, Oct 12 2013

Keywords

Comments

A230099, A063114, A098736, A230101 are analogs of A092391 and A062028.

Crossrefs

Programs

  • Haskell
    a230099 n = a007954 n + n  -- Reinhard Zumkeller, Oct 13 2013
    
  • Maple
    with transforms; [seq(n+digprod(n), n=0..200)];
  • PARI
    a(n) = if (n, n + vecprod(digits(n)), 0); \\ Michel Marcus, Dec 18 2018
    
  • Python
    from math import prod
    def a(n): return n + prod(map(int, str(n)))
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = n iff n contains a digit 0 (A011540). - Bernard Schott, Jul 31 2023

A010065 a(n+1) = a(n) + sum of digits in base 4 representation of a(n), with a(0) = 1.

Original entry on oeis.org

1, 2, 4, 5, 7, 11, 16, 17, 19, 23, 28, 32, 34, 38, 43, 50, 55, 62, 70, 74, 79, 86, 91, 98, 103, 110, 118, 125, 133, 137, 142, 149, 154, 161, 166, 173, 181, 188, 196, 200, 205, 212, 217, 224, 229, 236, 244, 251, 262, 266, 271, 278, 283, 290, 295
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 2.24.

Crossrefs

Related base-4 sequences: A053737, A230631, A230632, A010064, A230633, A230634, A230635, A230636, A230637, A230638, A010065 (trajectory of 1)

Programs

  • Haskell
    a010065 n = a010065_list !! n
    a010065_list = iterate a230631 1  -- Reinhard Zumkeller, Mar 20 2015

Formula

a(n+1) = A230631(a(n)). - Reinhard Zumkeller, Mar 20 2015

Extensions

More terms from Neven Juric, Apr 11 2008

A016096 a(n+1) = a(n) + sum of its digits, with a(1) = 9.

Original entry on oeis.org

9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 117, 126, 135, 144, 153, 162, 171, 180, 189, 207, 216, 225, 234, 243, 252, 261, 270, 279, 297, 315, 324, 333, 342, 351, 360, 369, 387, 405, 414, 423, 432, 441, 450, 459, 477, 495, 513, 522, 531, 540
Offset: 1

Views

Author

Keywords

References

  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.

Crossrefs

Programs

  • Haskell
    a016096 n = a016096_list !! (n-1)
    a016096_list = iterate a062028 9  -- Reinhard Zumkeller, Oct 14 2013
    
  • Python
    from itertools import islice
    def A016096_gen(): # generator of terms
        a = 9
        while True:
            yield a
            a += sum(int(d) for d in str(a))
    A016096_list = list(islice(A016096_gen(),20)) # Chai Wah Wu, Mar 29 2022

Formula

a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013

A007612 a(n+1) = a(n) + digital root (A010888) of a(n).

Original entry on oeis.org

1, 2, 4, 8, 16, 23, 28, 29, 31, 35, 43, 50, 55, 56, 58, 62, 70, 77, 82, 83, 85, 89, 97, 104, 109, 110, 112, 116, 124, 131, 136, 137, 139, 143, 151, 158, 163, 164, 166, 170, 178, 185, 190, 191, 193, 197, 205, 212, 217, 218, 220, 224, 232, 239, 244, 245, 247, 251
Offset: 1

Views

Author

Keywords

Comments

Take m, a natural number. If m == 1 (mod 6), then for every n a(m)*a(n) is in A007612. - Ivan N. Ianakiev, May 08 2013

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007612 n = a007612_list !! (n-1)
    a007612_list = iterate a064806 1  -- Reinhard Zumkeller, Apr 13 2013
    
  • Maple
    A007612 := proc(n) option remember: if(n=1)then return 1: fi: return procname(n-1) + ((procname(n-1)-1) mod 9) + 1: end: seq(A007612(n), n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    dr[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]; NestList[#+dr[#]&, 1,60] (* Harvey P. Dale, Sep 24 2011 *)
    NestList[#+Mod[#,9]&,1,60] (* Harvey P. Dale, Sep 14 2016 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=1; for(k=2,n, v[k]=v[k-1]+v[k-1]%9); v \\ Charles R Greathouse IV, Jun 25 2017
    
  • PARI
    a(n)=n\6*27 + [-4,1,2,4,8,16][n%6+1] \\ Charles R Greathouse IV, Jun 25 2017

Formula

a(1) = 1, a(n+1) = a(n) + a(n) mod 9. - Reinhard Zumkeller, Mar 23 2003
First differences are [1,2,4,8,7,5] repeated. - M. F. Hasler, Sep 15 2009; corrected by John Keith, Aug 17 2022
n == 1, 2, 4, 8, 16, or 23 (mod 27). - Dean Hickerson, Mar 25 2003
Limit_{n->oo} a(n)/n = 9/2; A029898(n) = a(n+1) - a(n) = A010888(a(n)). - Reinhard Zumkeller, Feb 27 2006
a(6n+1)=27n+1, a(6n+2)=27n+2, a(6n+3)=27n+4, a(6n+4)=27n+8, a(6n+5)=27n+16, a(6n+6)=27n+23. - Franklin T. Adams-Watters, Mar 13 2006
G.f.: (1+4*x^4+3*x^3+x^2)/((x+1)*(x^2-x+1)*(x-1)^2). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n+1) = A064806(a(n)). - Reinhard Zumkeller, Apr 13 2013

A033298 a(n+1) = a(n) + sum of digits of a(n)^2, with a(1) = 1.

Original entry on oeis.org

1, 2, 6, 15, 24, 42, 60, 69, 87, 114, 141, 168, 186, 213, 240, 258, 285, 303, 330, 348, 357, 384, 411, 438, 465, 483, 510, 519, 546, 573, 600, 609, 636, 663, 699, 726, 753, 780, 798, 825, 852, 879, 906, 933, 969, 1005, 1014, 1041, 1068, 1086
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Examples

			a(6) = 42 as a(5) = 24 giving a(6) = 24 + (sum of digits of 24^2 = 576) = 24 + 5 + 7 + 6 = 42. - _David A. Corneth_, Jun 26 2022
		

Crossrefs

Partial sums of A139417.

Programs

  • Mathematica
    NestList[#+Total[IntegerDigits[#^2]]&,1,50] (* Harvey P. Dale, Sep 21 2023 *)
  • PARI
    first(n) = {n=max(n,1); my(res=vector(n)); res[1] = 1; for(i = 2, n, res[i] = res[i-1] + sumdigits(res[i-1]^2)); res} \\ David A. Corneth, Jun 26 2022

A230094 Numbers that can be expressed as (m + sum of digits of m) in exactly two ways.

Original entry on oeis.org

101, 103, 105, 107, 109, 111, 113, 115, 117, 202, 204, 206, 208, 210, 212, 214, 216, 218, 303, 305, 307, 309, 311, 313, 315, 317, 319, 404, 406, 408, 410, 412, 414, 416, 418, 420, 505, 507, 509, 511, 513, 515, 517, 519, 521, 606, 608, 610, 612, 614, 616, 618, 620, 622, 707, 709, 711, 713, 715, 717, 719, 721, 723, 808
Offset: 1

Views

Author

N. J. A. Sloane, Oct 10 2013, Oct 24 2013

Keywords

Comments

Numbers n such that A230093(n) = 2.
The sequence "Numbers n such that A230093(n) = 3" starts at 10^13+1 (see A230092). This implies that changing the definition of A230094 to "Numbers n such that A230093(n) >= 2" (the so-called "junction numbers") would produce a sequence which agrees with A230094 up to 10^13.
Makowski shows that the sequence of junction numbers is infinite.

Examples

			a(1) = 101 = 91 + (9+1) = 100 + (1+0+0);
a(10) = 202 = 191 + (1+9+1) = 200 + (2+0+0);
a(100) = 1106 = 1093 + (1+0+9+3) = 1102 + (1+1+0+2);
a(1000) = 10312 = 10295 + (1+0+2+9+5) = 10304 + (1+0+3+0+4).
		

References

  • Joshi, V. S. A note on self-numbers. Volume dedicated to the memory of V. Ramaswami Aiyar. Math. Student 39 (1971), 327--328 (1972). MR0330032 (48 #8371)
  • D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately Printed, 311 Devlali Camp, Devlali, India, 1963.
  • Makowski, Andrzej. On Kaprekar's "junction numbers''. Math. Student 34 1966 77 (1967). MR0223292 (36 #6340)
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)

Crossrefs

Programs

  • Haskell
    a230094 n = a230094_list !! (n-1)
    a230094_list = filter ((== 2) . a230093) [0..]
    -- Reinhard Zumkeller, Oct 11 2013
  • Maple
    For Maple code see A230093.
  • Mathematica
    Position[#, 2][[All, 1]] - 1 &@ Sort[Join[#2, Map[{#, 0} &, Complement[Range[#1], #2[[All, 1]]]] ] ][[All, -1]] & @@ {#, Tally@ Array[# + Total@ IntegerDigits@ # &, # + 1, 0]} &[10^3] (* Michael De Vlieger, Oct 28 2020, after Harvey P. Dale at A230093 *)

A309261 The sum of the number of times each unique digit in the previous number occurred in the numbers before that with a(1) = 0.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 12, 3, 1, 3, 2, 2, 3, 3, 4, 1, 4, 2, 4, 3, 5, 1, 5, 2, 5, 3, 6, 1, 6, 2, 6, 3, 7, 1, 7, 2, 7, 3, 8, 1, 8, 2, 8, 3, 9, 1, 9, 2, 9, 3, 10, 22, 10, 24, 16, 16, 18, 18, 20, 27, 18, 22, 15, 21, 35, 16, 25, 24, 24
Offset: 1

Views

Author

Nic Tomlinson, Jul 19 2019

Keywords

Examples

			For n=2, the previous term a(1) is 0 by definition and the digit 0 has never been seen before so a(2) is 0.
For n=3, a(2) is 0, the digit 0 has been seen once before so a(3) is 1.
For n=22, a(21) is 10, digit 1 has been seen once before a(21) and digit 0 has been seen eleven times, so a(22) = 12.
For n=68, a(67) is 22, digit 2 has been seen ten times before, we only consider unique digits of a(n-1), so a(68) = 10.
		

Crossrefs

Cf. A004207.

Programs

  • PARI
    { f=vector(base=10); for(n=1, 84, if(n==1, v=0, d=if(v, digits(v, base), [0]); s=Set(d); v=sum(i=1, #s, f[1+s[i]]); apply(t -> f[1+t]++, d)); print1(v ", ")) } \\ Rémy Sigrist, Jul 24 2019
    
  • Python
    from collections import Counter
    from itertools import count, islice
    def agen(): # generator of terms
        an, c = 0, Counter()
        while True:
            yield an
            s = str(an)
            an = sum(c[d] for d in set(s))
            c.update(s)
    print(list(islice(agen(), 84))) # Michael S. Branicky, Mar 24 2025
Previous Showing 11-20 of 66 results. Next