A237255
Values of x in the solutions to x^2 - 5xy + y^2 + 17 = 0, where 0 < x < y.
Original entry on oeis.org
2, 3, 7, 13, 33, 62, 158, 297, 757, 1423, 3627, 6818, 17378, 32667, 83263, 156517, 398937, 749918, 1911422, 3593073, 9158173, 17215447, 43879443, 82484162, 210239042, 395205363, 1007315767, 1893542653, 4826339793, 9072507902, 23124383198, 43468996857
Offset: 1
3 is in the sequence because (x, y) = (3, 13) is a solution to x^2 - 5xy + y^2 + 17 = 0.
A334673
a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 24, 552, 12673, 290928, 6678672, 153318529, 3519647496, 80798573880, 1854847551745, 42580695116256, 977501140122144, 22439945527693057, 515141245996818168, 11825808712399124808, 271478459139183052417, 6232178751488811080784, 143068632825103471805616
Offset: 0
Cf.
A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
-
CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 07 2021 *)
a(13)-a(14) corrected and more terms added by
Alois P. Heinz, Sep 11 2020
A085348
Ratio-determined insertion sequence I(0.264) (see the link below).
Original entry on oeis.org
1, 4, 19, 72, 341, 1292, 6119, 23184, 109801, 416020, 1970299, 7465176, 35355581, 133957148, 634430159, 2403763488, 11384387281, 43133785636, 204284540899, 774004377960, 3665737348901, 13888945017644, 65778987739319
Offset: 0
A085349
Ratio-determined insertion sequence I(0.26688) (see the link below).
Original entry on oeis.org
1, 4, 15, 71, 269, 1274, 4827, 22861, 86617, 410224, 1554279, 7361171, 27890405, 132090854, 500473011, 2370274201, 8980623793, 42532844764, 161150755263, 763220931551, 2891732970941, 13695443923154, 51890042721675
Offset: 1
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types, June 2003 [Broken link]
- John W. Layman, Ratio-Determined Insertion Sequences and the Tree of their Recurrence Types, June 2003 [local copy, corrected]
- John W. Layman, Sequences Generated by Age-Determined Insertion Trees, Jan 2006
- John W. Layman, Sequences Generated by Age-Determined Insertion Trees, Jan 2006 [Local copy]
- Index entries for linear recurrences with constant coefficients, signature (0, 18, 0, -1).
-
LinearRecurrence[{0,18,0,-1},{1,4,15,71},30] (* Harvey P. Dale, Mar 04 2013 *)
A099867
a(n) = 5*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=9.
Original entry on oeis.org
1, 9, 44, 211, 1011, 4844, 23209, 111201, 532796, 2552779, 12231099, 58602716, 280782481, 1345309689, 6445765964, 30883520131, 147971834691, 708975653324, 3396906431929, 16275556506321, 77980876099676, 373628823992059, 1790163243860619, 8577187395311036
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (5,-1).
-
I:=[1,9]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 30 2015
-
a[0] = 1; a[1] = 9; a[n_] := a[n] = 5 a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, Dec 14 2004 *)
LinearRecurrence[{5, -1}, {1, 9}, 30] (* or *) CoefficientList[Series[(1 + 4 x)/(1 - 5 x + x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 26 2011 *)
-
Vec((1+4*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 31 2017
A123971
Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
Original entry on oeis.org
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Triangle begins:
1
2, -1
5, -5, 1
13, -19, 8, -1
34, -65, 42, -11, 1
89, -210, 183, -74, 14, -1
233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
1
0, 1
0, 2, -1
0, 5, -5, 1
0, 13, -19, 8, -1
0, 34, -65, 42, -11, 1
0, 89, -210, 183, -74, 14, -1
0, 233, -654, 717, -394, 115, -17, 1
Cf.
A094954,
A098495,
A123971,
A126124,
A152063,
A001519,
A079935,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570,
A001870,
A126124.
-
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
@CachedFunction
def A123971(n,k): # With T(0,0) = 1!
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
return A123971(n-1,k-1) - A123971(n-2,k) - h
for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A340476
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 4, 19, 91, 436, ...
1, 11, 176, 2911, 48301, ...
1, 29, 1471, 79808, 4375897, ...
1, 76, 11989, 2091817, 372713728, ...
-
default(realprecision, 120);
{T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
-
{T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}
A101463
Expansion of g.f. (x^3+x^2+2*x+1)/(x^4+5*x^2+1).
Original entry on oeis.org
1, 2, -4, -9, 19, 43, -91, -206, 436, 987, -2089, -4729, 10009, 22658, -47956, -108561, 229771, 520147, -1100899, -2492174, 5274724, 11940723, -25272721, -57211441, 121088881, 274116482, -580171684, -1313370969, 2779769539, 6292738363, -13318676011
Offset: 0
- F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
Elements of even index in the sequence gives
A004253. Elements of odd index in the sequence gives
A002310.
-
CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,-5,0,-1},{1,2,-4,-9},31] (* Harvey P. Dale, Apr 15 2012 *)
A261522
Positive integers k such that x^2 - 23xy + y^2 + k = 0 has integer solutions.
Original entry on oeis.org
21, 41, 59, 75, 84, 89, 101, 111, 119, 125, 129, 131, 164, 189, 201, 236, 251, 269, 300, 311, 329, 336, 356, 369, 381, 404, 419, 425, 444, 461, 476, 479, 489, 500, 509, 516, 521, 524, 525, 531, 579, 581, 629, 656, 675, 719, 731, 756, 761, 801, 804, 831, 839
Offset: 1
41 is in the sequence because x^2 - 23xy + y^2 + 41 = 0 has integer solutions; for example, (x, y) = (2, 45).
Cf.
A031363,
A084917,
A237351,
A237599,
A237606,
A237609,
A237610,
A236330,
A236331,
A238240,
A238245.
Comments