cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A237255 Values of x in the solutions to x^2 - 5xy + y^2 + 17 = 0, where 0 < x < y.

Original entry on oeis.org

2, 3, 7, 13, 33, 62, 158, 297, 757, 1423, 3627, 6818, 17378, 32667, 83263, 156517, 398937, 749918, 1911422, 3593073, 9158173, 17215447, 43879443, 82484162, 210239042, 395205363, 1007315767, 1893542653, 4826339793, 9072507902, 23124383198, 43468996857
Offset: 1

Views

Author

Colin Barker, Feb 05 2014

Keywords

Comments

The corresponding values of y are given by a(n+2).

Examples

			3 is in the sequence because (x, y) = (3, 13) is a solution to x^2 - 5xy + y^2 + 17 = 0.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x-1)*(x+2)*(2*x+1)/(x^4-5*x^2+1) + O(x^100))

Formula

a(n) = 5*a(n-2)-a(n-4).
G.f.: -x*(x-1)*(x+2)*(2*x+1) / (x^4-5*x^2+1).

A334673 a(n) = 23*a(n-1) - a(n-2) + 1 for n > 1, a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 24, 552, 12673, 290928, 6678672, 153318529, 3519647496, 80798573880, 1854847551745, 42580695116256, 977501140122144, 22439945527693057, 515141245996818168, 11825808712399124808, 271478459139183052417, 6232178751488811080784, 143068632825103471805616
Offset: 0

Views

Author

Francesca Arici, Sep 11 2020

Keywords

Crossrefs

Cf. A004253, A004254, A030221, A097778 (first differences).
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Mathematica
    CoefficientList[Series[x/((1 - x) (x^2 - 23 x + 1)), {x, 0, 18}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = A004254(n)*A004254(n+1)/5 = A160695(n+1)/5.
G.f.: x/((1-x)*(x^2-23*x+1)). - Alois P. Heinz, Sep 11 2020
From Klaus Purath, Jun 18 2025: (Start)
a(n) = (A004253(n+1)^2 - 1) / 15.
a(n) = (A030221(n)^2 - 1) / 35.
a(n) + a(n+1) = A004253(n+1)^2. (End)

Extensions

a(13)-a(14) corrected and more terms added by Alois P. Heinz, Sep 11 2020

A085348 Ratio-determined insertion sequence I(0.264) (see the link below).

Original entry on oeis.org

1, 4, 19, 72, 341, 1292, 6119, 23184, 109801, 416020, 1970299, 7465176, 35355581, 133957148, 634430159, 2403763488, 11384387281, 43133785636, 204284540899, 774004377960, 3665737348901, 13888945017644, 65778987739319
Offset: 0

Views

Author

John W. Layman, Jun 24 2003

Keywords

Comments

This is one of the "twin" ratio-determined insertion sequences (RDIS) that are "children" in the next generation below the "parent" sequences I(0.25024) (A004253) and I(0.26816) (A001353) in the recurrence tree of RDIS sequences. The RDIS twin of this sequence is A085349. See the link for an explanation of RDIS twin. See A082630 or A082981 for other recent examples of RDIS sequences.
Assuming that a(n) = 18a(n-2) - a(n-4) is true: For n >= 2, a(n) = (t(i+2n+2) - t(i))/(t(i+n+2) + t(i+n)*(-1)^(n-1)), where (t) is any recurrence of the form (4,1) without regard to initial values. With an additional initional 0 is this sequence the union of A060645 for even n and A049629 for odd n. - Klaus Purath, Sep 22 2024

Crossrefs

Formula

It appears that a(n)=18a(n-2)-a(n-4).
Apparently a(n)a(n+3) = -4 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004
From Klaus Purath, Sep 22 2024: (Start)
Assuming that a(n) = 18a(n-2) - a(n-4) is true:
a(2n) = 5a(2n-1) - a(2n-2), n >= 1.
a(2n+1) = 4a(2n) - a(2n-1), n >= 1. (End)

A085349 Ratio-determined insertion sequence I(0.26688) (see the link below).

Original entry on oeis.org

1, 4, 15, 71, 269, 1274, 4827, 22861, 86617, 410224, 1554279, 7361171, 27890405, 132090854, 500473011, 2370274201, 8980623793, 42532844764, 161150755263, 763220931551, 2891732970941, 13695443923154, 51890042721675
Offset: 1

Views

Author

John W. Layman, Jun 24 2003

Keywords

Comments

This is one of the "twin" ratio-determined insertion sequences (RDIS) that are "children" in the next generation below the "parent" sequences I(0.25024) (A004253) and I(0.26816) (A001353) in the recurrence tree of RDIS sequences. The RDIS twin of this sequence is A085348. See the link for an explanation of RDIS twin. See A082630 or A082981 for other recent examples of RDIS sequences.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,18,0,-1},{1,4,15,71},30] (* Harvey P. Dale, Mar 04 2013 *)

Formula

It appears that a(n)=18a(n-2)-a(n-4).
Apparently a(n)a(n+3) = 11 + a(n+1)a(n+2). - Ralf Stephan, May 29 2004

A099867 a(n) = 5*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=9.

Original entry on oeis.org

1, 9, 44, 211, 1011, 4844, 23209, 111201, 532796, 2552779, 12231099, 58602716, 280782481, 1345309689, 6445765964, 30883520131, 147971834691, 708975653324, 3396906431929, 16275556506321, 77980876099676, 373628823992059, 1790163243860619, 8577187395311036
Offset: 0

Views

Author

Creighton Dement, Oct 28 2004

Keywords

Comments

From Klaus Purath, Mar 07 2023: (Start)
For any two terms (a(n), a(n+1)) = (x, y), x^2 - 5*x*y + y^2 = 37 = A082111(4). This is valid in general for all recursive sequences (t) with constant coefficients (5,-1) and t(0) = 1: x^2 - 5*x*y + y^2 = A082111(t(1)-5). This includes and interprets the Feb 04 2014 comment in A004253 by Colin Barker.
By analogy to all this, for three consecutive terms (x, y, z) of any sequence (t) of the form (5,-1) with t(0) = 1: y^2 - x*z = A082111(t(1)-5). (End)

Crossrefs

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jul 30 2015
    
  • Mathematica
    a[0] = 1; a[1] = 9; a[n_] := a[n] = 5 a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 21}] (* Robert G. Wilson v, Dec 14 2004 *)
    LinearRecurrence[{5, -1}, {1, 9}, 30] (* or *) CoefficientList[Series[(1 + 4 x)/(1 - 5 x + x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jun 26 2011 *)
  • PARI
    Vec((1+4*x) / (1-5*x+x^2) + O(x^30)) \\ Colin Barker, Mar 31 2017

Formula

|2*a(n) + A099868(n) - A003501(n+1)| = 20*A004254(n).
From R. J. Mathar, Sep 11 2008: (Start)
G.f.: (1+4*x) / (1-5*x+x^2).
a(n) = A004254(n+1) + 4*A004254(n).
(End)
a(n) = 2^(-1-n)*((5-sqrt(21))^n*(-13+sqrt(21)) + (5+sqrt(21))^n*(13+sqrt(21))) / sqrt(21). - Colin Barker, Mar 31 2017

A123971 Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.

Original entry on oeis.org

1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 30 2006

Keywords

Comments

This entry is the result of merging two sequences, this one and a later submission by Philippe Deléham, Nov 29 2013 (with edits from Ralf Stephan, Dec 12 2013). Most of the present version is the work of Philippe Deléham, the only things remaining from the original entry are the sequence data and the Mathematica program. - N. J. A. Sloane, May 31 2014
Subtriangle of the triangle given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Apart from signs, equals A126124.
Row sums = 1.
Sum_{k=0..n} T(n,k)*(-x)^k = A001519(n+1), A079935(n+1), A004253(n+1), A001653(n+1), A049685(n), A070997(n), A070998(n), A072256(n+1), A078922(n+1), A077417(n), A085260(n+1), A001570(n+1) for x=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.

Examples

			Triangle begins:
  1
  2, -1
  5, -5, 1
  13, -19, 8, -1
  34, -65, 42, -11, 1
  89, -210, 183, -74, 14, -1
  233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
  1
  0, 1
  0, 2, -1
  0, 5, -5, 1
  0, 13, -19, 8, -1
  0, 34, -65, 42, -11, 1
  0, 89, -210, 183, -74, 14, -1
  0, 233, -654, 717, -394, 115, -17, 1
		

Crossrefs

Programs

  • Mathematica
    Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
  • PARI
    T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
    
  • Sage
    @CachedFunction
    def A123971(n,k): # With T(0,0) = 1!
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
        return A123971(n-1,k-1) - A123971(n-2,k) - h
    for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^n*A126124(n+1,k+1).
T(n,k) = (-1)^k*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1-x)/(1+(y-3)*x+x^2).
T(n,0) = A001519(n+1) = A000045(2*n+1).
T(n+1,1) = -A001870(n).

Extensions

Edited by N. J. A. Sloane, May 31 2014

A340476 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Product_{a=1..n} Product_{b=1..k} (4*sin(a*Pi/(2*n+1))^2 + 4*cos(b*Pi/(2*k+1))^2).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 19, 11, 1, 1, 91, 176, 29, 1, 1, 436, 2911, 1471, 76, 1, 1, 2089, 48301, 79808, 11989, 199, 1, 1, 10009, 801701, 4375897, 2091817, 97021, 521, 1, 1, 47956, 13307111, 240378643, 372713728, 53924597, 783511, 1364, 1
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2021

Keywords

Examples

			Square array begins:
  1,  1,     1,       1,         1, ...
  1,  4,    19,      91,       436, ...
  1, 11,   176,    2911,     48301, ...
  1, 29,  1471,   79808,   4375897, ...
  1, 76, 11989, 2091817, 372713728, ...
		

Crossrefs

Column k=0..1 give A000012, A002878.
Main diagonal gives A127606.

Programs

  • PARI
    default(realprecision, 120);
    {T(n, k) = round(prod(a=1, n, prod(b=1, k, 4*sin(a*Pi/(2*n+1))^2+4*cos(b*Pi/(2*k+1))^2)))}
    
  • PARI
    {T(n, k) = sqrtint(4^k*polresultant(polchebyshev(2*n+1, 1, I*x/2), polchebyshev(2*k, 2, x/2)))}

Formula

T(n,k) = 2^k * sqrt(Resultant(T_{2*n+1}(i*x/2), U_{2*k}(x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).

A101463 Expansion of g.f. (x^3+x^2+2*x+1)/(x^4+5*x^2+1).

Original entry on oeis.org

1, 2, -4, -9, 19, 43, -91, -206, 436, 987, -2089, -4729, 10009, 22658, -47956, -108561, 229771, 520147, -1100899, -2492174, 5274724, 11940723, -25272721, -57211441, 121088881, 274116482, -580171684, -1313370969, 2779769539, 6292738363, -13318676011
Offset: 0

Views

Author

Creighton Dement, Jan 20 2005

Keywords

Comments

A floretion-generated sequence relating to Pythagoras' theorem generalized.
Floretion Algebra Multiplication Program. FAMP code: em[J* ]sigcycseq[ + .75'i + .5'k + .25i' + .5j' + .5k' - .25'ii' + .25'jj' - .25'kk' - .75'jk' + .5'ki' - .25'kj' + .25e]

References

  • F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.

Crossrefs

Elements of even index in the sequence gives A004253. Elements of odd index in the sequence gives A002310.

Programs

  • Mathematica
    CoefficientList[Series[(x^3+x^2+2x+1)/(x^4+5x^2+1),{x,0,30}],x] (* or *) LinearRecurrence[{0,-5,0,-1},{1,2,-4,-9},31] (* Harvey P. Dale, Apr 15 2012 *)

Formula

Let b(1)=1, b(2)=2, b(3)=4 and b(n)=(b(n-1)*b(n-2)+(3+(-1)^n)/2)/b(n-3) then b(n)=abs(a(n)) - Benoit Cloitre, Mar 03 2007
a(n) = -5*a(n-2)-a(n-4), n>3. [Harvey P. Dale, Apr 15 2012]
G.f.: ( 1+2*x+x^2+x^3 ) / ( 1+5*x^2+x^4 ). - R. J. Mathar, Jun 18 2014
a(n) = -3a(n-1)+2a(n-2) if n even. a(n) = (5*a(n-1)+a(n-2))/2 if n odd. - R. J. Mathar, Jun 18 2014

A261522 Positive integers k such that x^2 - 23xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

21, 41, 59, 75, 84, 89, 101, 111, 119, 125, 129, 131, 164, 189, 201, 236, 251, 269, 300, 311, 329, 336, 356, 369, 381, 404, 419, 425, 444, 461, 476, 479, 489, 500, 509, 516, 521, 524, 525, 531, 579, 581, 629, 656, 675, 719, 731, 756, 761, 801, 804, 831, 839
Offset: 1

Views

Author

Colin Barker, Aug 23 2015

Keywords

Examples

			41 is in the sequence because x^2 - 23xy + y^2 + 41 = 0 has integer solutions; for example, (x, y) = (2, 45).
		

Crossrefs

Previous Showing 31-39 of 39 results.