cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A004343 Binomial coefficient C(5n,n-1).

Original entry on oeis.org

1, 10, 105, 1140, 12650, 142506, 1623160, 18643560, 215553195, 2505433700, 29248649430, 342700125300, 4027810484880, 47465835030320, 560658857389200, 6635869816740560, 78682166288559225, 934433788613079150
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Formula

From Peter Bala, Jul 21 2024: (Start)
a(n) = Sum_{k = 0..n-1} binomial(4*n+k, k).
a(n) = 5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/((4*n - 4)*(4*n - 2)*(4*n - 1)*(4*n + 1)) * a(n-1) with a(1) = 1. (End)

A004356 Binomial coefficient C(6n,n-1).

Original entry on oeis.org

1, 12, 153, 2024, 27405, 376992, 5245786, 73629072, 1040465790, 14783142660, 210980549208, 3022285436352, 43430966148115, 625806790696080, 9038619861406740, 130815226545884704, 1896724514424115530
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[6n,n-1],{n,20}] (* Harvey P. Dale, Mar 04 2017 *)

Formula

D-finite with recurrence 5*(n-1)*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-5)*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 19 2025

A004369 Binomial coefficient C(7n,n-1).

Original entry on oeis.org

1, 14, 210, 3276, 52360, 850668, 13983816, 231917400, 3872894697, 65033528560, 1096993404430, 18574174153080, 315502265971620, 5373846361969456, 91748617512913200, 1569699972909739440
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

A023820 Sum of exponents in prime-power factorization of C(3n,n-1).

Original entry on oeis.org

0, 2, 4, 4, 4, 7, 7, 8, 8, 8, 11, 12, 9, 12, 13, 12, 11, 13, 14, 15, 14, 17, 18, 19, 16, 18, 20, 18, 18, 21, 20, 21, 19, 20, 22, 22, 19, 22, 24, 22, 21, 24, 27, 29, 28, 28, 29, 31, 27, 28, 29, 29, 28, 34, 32, 32, 31, 30, 34, 34, 32, 34, 36, 35, 31, 32, 31, 33, 33, 36, 35, 36, 32, 36, 40, 37, 36, 38
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[Total[FactorInteger[Binomial[3 n, n - 1]][[All, 2]]], {n, 2, 78}]] (* Ivan Neretin, Nov 02 2017 *)
    a[n_] := PrimeOmega[Binomial[3*n, n-1]]; Array[a, 100] (* Amiram Eldar, Jun 12 2025 *)
  • PARI
    a(n) = bigomega(binomial(3*n, n-1)); \\ Amiram Eldar, Jun 12 2025

Formula

From Amiram Eldar, Jun 12 2025: (Start)
a(n) = A001222(A004319(n)).
a(n) = A023819(n) - A001222(2*n+1) + A001222(n). (End)

A120981 Triangle read by rows: T(n,k) is the number of ternary trees with n edges and having k vertices of outdegree 1 (n >= 0, k >= 0).

Original entry on oeis.org

1, 0, 3, 3, 0, 9, 1, 27, 0, 27, 18, 12, 162, 0, 81, 15, 270, 90, 810, 0, 243, 138, 270, 2430, 540, 3645, 0, 729, 189, 2898, 2835, 17010, 2835, 15309, 0, 2187, 1218, 4536, 34776, 22680, 102060, 13608, 61236, 0, 6561, 2280, 32886, 61236, 312984, 153090, 551124
Offset: 0

Views

Author

Emeric Deutsch, Jul 21 2006

Keywords

Comments

A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.

Examples

			T(2,0)=3 because we have (Q,L,M), (Q,L,R) and (Q,M,R), where Q denotes the root and L (M,R) denotes a left (middle, right) child of Q.
Triangle starts:
   1;
   0,   3;
   3,   0,   9;
   1,  27,   0,  27;
  18,  12, 162,   0, 81;
  15, 270,  90, 810,  0, 243;
		

Crossrefs

Diagonals include A129530, A036216.

Programs

  • Maple
    T:=proc(n,k) if k<=n then (1/(n+1))*binomial(n+1,k)*sum(3^(3*j-n+2*k)*binomial(n+1-k,j)*binomial(j,n-k-2*j),j=0..n+1-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := (1/(n+1))*Binomial[n+1, k]*Sum[3^(2k - n + 3j)*Binomial[n + 1 - k, j]*Binomial[j, n - k - 2j], {j, 0, n - k + 1}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 02 2018 *)
  • PARI
    T(n,k) = binomial(n+1, k)*sum(j=0, n+1-k, 3^(2*k-n+3*j)*binomial(n+1-k, j)*binomial(j, n-k-2*j))/(n+1); \\ Andrew Howroyd, Nov 06 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n + 1, k)*sum([3**(2*k - n + 3*j)*binomial(n + 1 - k, j)*binomial(j, n - k - 2*j) for j in range(n + 2 - k)])//(n + 1)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Nov 07 2017

Formula

T(n,0) = A120984(n).
Sum_{k>=1} k*T(n,k) = 3*binomial(3n,n-1) = 3*A004319(n).
T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=0..n+1-k} 3^(2k-n+3j)*binomial(n+1-k,j)*binomial(j,n-k-2j).
G.f.: G=G(t,z) satisfies G = 1 + 3tzG + 3z^2*G^2 + z^3*G^3.

A127040 a(n) = binomial(floor((3n+4)/2),floor(n/2)).

Original entry on oeis.org

1, 1, 5, 6, 28, 36, 165, 220, 1001, 1365, 6188, 8568, 38760, 54264, 245157, 346104, 1562275, 2220075, 10015005, 14307150, 64512240, 92561040, 417225900, 600805296, 2707475148, 3910797436, 17620076360, 25518731280, 114955808528
Offset: 0

Views

Author

T. D. Noe, Jan 03 2007

Keywords

Comments

With offset 2, the number of compositions of n into floor(n/2) parts, which is an upper bound for A007874.

Crossrefs

Cf. A004319 (bisection), A025174 (bisection), A099578.

Programs

  • Maple
    seq(sum(binomial(n+k, k-1), k=0..ceil((n+1)/2)), n=0..28); # Zerinvary Lajos, Apr 11 2007
  • Mathematica
    CoefficientList[Series[(-1 + (2 Cos[1/3 ArcSin[(3 Sqrt[3] x)/2]])/Sqrt[4 - 27 x^2] + 3 x^3 Hypergeometric2F1[4/3, 5/3, 5/2, (27 x^2)/4])/(3 x^2), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 16 2016 *)
    Table[Binomial[Floor[(3 n + 4)/2], Floor[n/2]], {n, 0, 28}] (* Michael De Vlieger, Aug 18 2016 *)
  • PARI
    a(n) = binomial((3*n+4)\2, n\2); \\ Michel Marcus, Sep 09 2016

Formula

From Benedict W. J. Irwin, Aug 16 2016: (Start)
G.f.: (-1 + (2*cos(arcsin(3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2) + 3*x^3*2F1(4/3,5/3;5/2;27*x^2/4))/(3*x^2).
E.g.f.: 2F3(4/3,5/3;1/2,3/2,2;27*x^2/16) + x*2F3(4/3,5/3;1,3/2,5/2;27*x^2/16).
(End)
D-finite with recurrence 8*(n+2)*(n+1)*a(n) -84*(n-1)*(n+1)*a(n-1) +6*(-33*n^2+54*n-8)*a(n-2) +9*(63*n^2-63*n-16)*a(n-3) +108*(3*n-5)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Feb 08 2021

A100400 Triangle read by rows: T(n,k) is the number of nonroot nodes of outdegree k (0<=k<=n-1) in all non-crossing trees with n edges.

Original entry on oeis.org

1, 4, 2, 21, 12, 3, 120, 72, 24, 4, 715, 440, 165, 40, 5, 4368, 2730, 1092, 312, 60, 6, 27132, 17136, 7140, 2240, 525, 84, 7, 170544, 108528, 46512, 15504, 4080, 816, 112, 8, 1081575, 692208, 302841, 105336, 29925, 6840, 1197, 144, 9, 6906900, 4440150, 1973400, 708400, 212520, 53130, 10780, 1680, 180, 10
Offset: 1

Views

Author

Emeric Deutsch, Dec 30 2004

Keywords

Comments

Row n contains n terms. Row sums yield A004319. Column 0 yields A045721.

Examples

			T(2,1)=2 because in the non-crossing trees /_, _\ and /\ we have 2 nonroot nodes of outdegree 1.
Triangle begins:
1;
4,2;
21,12,3;
120,72,24,4;
		

Crossrefs

Programs

  • Maple
    for n from 1 to 10 do seq((k+1)*binomial(3*n-k-2,2*n-1),k=0..n-1) od; # yields sequence in triangular form

Formula

T(n, k) = (k+1)binomial(3n-k-2, 2n-1) (0<=k<=n-1).
Previous Showing 11-17 of 17 results.