cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A004319 a(n) = binomial(3*n, n - 1).

Original entry on oeis.org

1, 6, 36, 220, 1365, 8568, 54264, 346104, 2220075, 14307150, 92561040, 600805296, 3910797436, 25518731280, 166871334960, 1093260079344, 7174519270695, 47153358767970, 310325523515700, 2044802197953900, 13488561475572645, 89067326568860640, 588671286046028640
Offset: 1

Views

Author

Keywords

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Maple
    A004319 := proc(n)
    binomial(3*n,n-1);
    end proc: # R. J. Mathar, Aug 10 2015
  • Mathematica
    Table[Binomial[3n, n - 1], {n, 20}] (* Harvey P. Dale, Sep 21 2011 *)
  • Maxima
    a(n):=sum((binomial(3*i-1,2*i-1)*binomial(3*n-3*i-3,2*n-2*i-2))/(2*n-2*i-1),i,1,n-1)/2; /* Vladimir Kruchinin, May 15 2013 */
    
  • PARI
    vector(30, n, binomial(3*n, n-1)) \\ Altug Alkan, Nov 04 2015

Formula

G.f.: (g-1)/(1-3*z*g^2), where g = g(z) is given by g = 1 + z*g^3, g(0) = 1, i.e. (in Maple notation), g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z). - Emeric Deutsch, May 22 2003
a(n) = Sum_{i=0..n-1} binomial(i+2*n, i). - Ralf Stephan, Jun 03 2005
D-finite with recurrence -2*(2*n+1)*(n-1)*a(n) + 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Feb 05 2013
a(n) = (1/2) * Sum_{i=1..n-1} binomial(3*i - 1, 2*i - 1)*binomial(3*n - 3*i - 3, 2*n - 2*i - 2)/(2*n - 2*i - 1). - Vladimir Kruchinin, May 15 2013
G.f.: x*hypergeom2F1(5/3, 4/3; 5/2; 27x/4). - R. J. Mathar, Aug 10 2015
a(n) = n*A001764(n). - R. J. Mathar, Aug 10 2015
From Peter Bala, Nov 04 2015: (Start)
With offset 0, the o.g.f. equals f(x)*g(x)^3, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k, n). See the cross-references. (End)
G.f.: cos(t)/(2*sqrt(1 - (27*x)/4)) - sin(t)/(sqrt(3)*sqrt(x)), where t = arcsin((sqrt(27*x))/2)/3. - Vladimir Kruchinin, May 13 2016
a(n) = [x^(2*n+1)] 1/(1 - x)^n. - Ilya Gutkovskiy, Oct 10 2017
a(n) = binomial(n+1, 2) * A000139(n). - F. Chapoton, Feb 23 2024

A004331 Binomial coefficient C(4n,n-1).

Original entry on oeis.org

1, 8, 66, 560, 4845, 42504, 376740, 3365856, 30260340, 273438880, 2481256778, 22595200368, 206379406870, 1889912732400, 17345898649800, 159518999862720, 1469568786235308, 13559593014190944, 125288932441604200
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Maple
    #A004331
    seq(binomial(4*n - 1,n), n = 0..20);
  • Mathematica
    a[n_] := Binomial[4*n, n - 1]; Array[a, 19] (* Amiram Eldar, May 09 2020 *)
  • PARI
    vector(30, n, binomial(4*n, n-1)) \\ Altug Alkan, Nov 05 2015

Formula

G.f.: (g^2-g)/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
With an offset of 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A224274 (k = 3). - Peter Bala, Nov 04 2015
D-finite with recurrence 3*(n-1)*(3*n-1)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Mar 19 2025

A365341 a(n) = (5*n)!/(4*n+1)!.

Original entry on oeis.org

1, 1, 10, 210, 6840, 303600, 17100720, 1168675200, 93963542400, 8691104822400, 909171781056000, 106137499051584000, 13679492361575040000, 1929327666754295808000, 295570742023171270656000, 48877281133334949335040000, 8677556868736487617966080000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (5*n)!/(4*n+1)!;
    
  • Python
    from sympy import ff
    def A365341(n): return ff(5*n,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: exp( 1/5 * Sum_{k>=1} binomial(5*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002294(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^4).
a(n) = Sum_{k=0..n} (4*n+1)^(k-1) * |Stirling1(n,k)|. (End)

A023838 Sum of exponents in prime-power factorization of C(5n,n-1).

Original entry on oeis.org

0, 2, 3, 5, 5, 7, 8, 9, 8, 10, 10, 12, 14, 13, 15, 14, 14, 16, 14, 17, 17, 18, 18, 21, 18, 22, 24, 23, 23, 24, 24, 24, 23, 23, 24, 25, 24, 26, 28, 29, 25, 30, 27, 29, 33, 30, 30, 32, 32, 33, 33, 37, 37, 38, 38, 37, 36, 40, 39, 44, 39, 41, 40, 39, 37, 39, 38, 39, 42, 41, 44, 44, 43, 43, 44, 46, 48, 49
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[Total[Transpose[FactorInteger[Binomial[5 n,n-1]]] [[2]]],{n,2,80}]] (* Harvey P. Dale, Dec 31 2012 *)
    a[n_] := PrimeOmega[Binomial[5*n, n-1]]; Array[a, 100] (* Amiram Eldar, Jun 14 2025 *)
  • PARI
    a(n) = bigomega(binomial(5*n,n-1)); \\ Amiram Eldar, Jun 14 2025

Formula

From Amiram Eldar, Jun 14 2025: (Start)
a(n) = A001222(A004343(n)).
a(n) = A023837(n) - A001222(4*n+1) + A001222(n). (End)

A004356 Binomial coefficient C(6n,n-1).

Original entry on oeis.org

1, 12, 153, 2024, 27405, 376992, 5245786, 73629072, 1040465790, 14783142660, 210980549208, 3022285436352, 43430966148115, 625806790696080, 9038619861406740, 130815226545884704, 1896724514424115530
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[6n,n-1],{n,20}] (* Harvey P. Dale, Mar 04 2017 *)

Formula

D-finite with recurrence 5*(n-1)*(5*n+1)*(5*n-3)*(5*n-2)*(5*n-1)*a(n) -72*(6*n-5)*(6*n-1)*(3*n-1)*(2*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 19 2025

A004369 Binomial coefficient C(7n,n-1).

Original entry on oeis.org

1, 14, 210, 3276, 52360, 850668, 13983816, 231917400, 3872894697, 65033528560, 1096993404430, 18574174153080, 315502265971620, 5373846361969456, 91748617512913200, 1569699972909739440
Offset: 1

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.

Crossrefs

Showing 1-6 of 6 results.