A216316
G.f.: 1/( (1-8*x)*(1+x)^2 )^(1/3).
Original entry on oeis.org
1, 2, 13, 80, 538, 3740, 26650, 193160, 1417945, 10511450, 78533629, 590485208, 4463274232, 33886781840, 258260802232, 1974759985952, 15143163422794, 116417053435316, 896996316176290, 6925241271855296, 53562550587963052, 414948608904171464, 3219356873886333676
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 80*x^3 + 538*x^4 + 3740*x^5 + 26650*x^6 +...
where 1/A(x)^3 = 1 - 6*x - 15*x^2 - 8*x^3.
The logarithm of the g.f. begins:
log(A(x)) = 2*x + 22*x^2/2 + 170*x^3/3 + 1366*x^4/4 + 10922*x^5/5 + 87382*x^6/6 +...+ A007613(n)*x^n/n +...
-
CoefficientList[Series[1/((1-8*x)*(1+x)^2)^(1/3), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=polcoeff(1/( (1-8*x)*(1+x)^2 +x*O(x^n) )^(1/3),n)}
-
{a(n)=local(A=1+x); A=exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, 3*j))*x^m/m +x*O(x^n))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
A361840
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 - x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 15, 126, 1, 3, 12, 90, 945, 1, 3, 9, 57, 585, 7371, 1, 3, 6, 27, 297, 3969, 58968, 1, 3, 3, 0, 78, 1629, 27657, 480168, 1, 3, 0, -24, -75, 207, 9216, 196290, 3961386, 1, 3, -3, -45, -165, -438, 459, 53217, 1411965, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 15, 12, 9, 6, 3, ...
126, 90, 57, 27, 0, -24, ...
945, 585, 297, 78, -75, -165, ...
7371, 3969, 1629, 207, -438, -444, ...
-
T(n, k) = (-1)^n*sum(j=0, n, 9^j*binomial(-1/3, j)*binomial(k*j, n-j));
A361880
Expansion of 1/(1 - 9*x/(1 - x)^2)^(1/3).
Original entry on oeis.org
1, 3, 24, 207, 1893, 17952, 174402, 1723494, 17250000, 174354822, 1776119970, 18208500000, 187659221409, 1942674634371, 20187543581880, 210472842939975, 2200677521078253, 23068297001178240, 242353695578011416, 2551260130246575048, 26905595698893121728
Offset: 0
A361895
Expansion of 1/(1 - 9*x/(1 - x)^3)^(1/3).
Original entry on oeis.org
1, 3, 27, 252, 2487, 25434, 266364, 2837082, 30601233, 333302931, 3658565127, 40413860334, 448778693844, 5005642415907, 56044616215041, 629552293867800, 7092072533703567, 80095810435943526, 906605837653876254, 10282430320166723448, 116829834042508121682
Offset: 0
-
a[0]=1; a[n_]:=3*n*(1 + n)*HypergeometricPFQ[{1-n, 1+n/2, (3+n)/2}, {5/3, 2}, -4/3]/2; Array[a,21,0] (* Stefano Spezia, May 02 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1-x)^3)^(1/3))
A224881
Expansion of 1/(1 - 16*x)^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
-
List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
-
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
-
{a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
for(n=0,30,print1(a(n),", "))
A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A361839
Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).
Original entry on oeis.org
1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 3, 3, 3, 3, 3, ...
18, 21, 24, 27, 30, 33, ...
126, 162, 201, 243, 288, 336, ...
945, 1341, 1809, 2352, 2973, 3675, ...
7371, 11529, 16893, 23607, 31818, 41676, ...
-
T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));
A361896
Expansion of 1/(1 - 9*x/(1 - x)^4)^(1/3).
Original entry on oeis.org
1, 3, 30, 300, 3165, 34584, 386880, 4400928, 50692266, 589584042, 6910397886, 81507086634, 966408021984, 11509174498254, 137584249375308, 1650109151463594, 19847075122106145, 239316542492974317, 2892135259684291248, 35021199836282568456, 424837125616822551264
Offset: 0
A362157
Expansion of -1/(1 - x * (1-9*x)^(1/3)).
Original entry on oeis.org
-1, -1, 2, 14, 62, 317, 1967, 13544, 98012, 731273, 5581682, 43377617, 342035204, 2729286017, 21996002729, 178769985791, 1463465010995, 12055667829734, 99858109234379, 831150925169516, 6947819513136614, 58303331305857293, 490961900646977570
Offset: 0
A376806
Expansion of 1/((1 - x^3)^3 - 9*x)^(1/3).
Original entry on oeis.org
1, 3, 18, 127, 957, 7497, 60229, 492483, 4079826, 34138873, 287946771, 2444458878, 20863127251, 178868929074, 1539439262406, 13293346718161, 115123998810525, 999553370761017, 8698196146639573, 75845560146124527, 662551474429229571, 5797239969198654748
Offset: 0
Comments