cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 126 results. Next

A070112 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 50, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 87, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 116, 119, 122
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(17)=50: [A070080(50), A070081(50), A070082(50)]=[4<6<8].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A124278 Triangle of the number of nondegenerate k-gons having perimeter n and whose sides are nondecreasing, for k=3..n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 2, 2, 1, 1, 3, 4, 4, 3, 2, 1, 1, 2, 5, 5, 4, 3, 2, 1, 1, 4, 7, 8, 6, 5, 3, 2, 1, 1, 3, 8, 9, 9, 6, 5, 3, 2, 1, 1, 5, 11, 14, 12, 10, 7, 5, 3, 2, 1, 1, 4, 12, 16, 16, 13, 10, 7, 5, 3, 2, 1, 1, 7, 16, 23, 22, 19, 14, 11, 7, 5, 3, 2, 1, 1, 5, 18, 25, 28, 24, 20, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 3

Views

Author

T. D. Noe, Oct 24 2006

Keywords

Comments

For a k-gon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides.
T(n,k) = number of partitions of n into k parts (k >= 3) in which all parts are less than n/2. Also T(n,k) = number of partitions of 2*n into k parts in which all parts are even and less than n. - L. Edson Jeffery, Mar 19 2012

Examples

			For polygons having perimeter 7: 2 triangles, 2 quadrilaterals, 2 pentagons, 1 hexagon and 1 heptagon. The triangle begins
1
0 1
1 1 1
1 1 1 1
2 2 2 1 1
1 3 2 2 1 1
		

Crossrefs

Cf. A124287 (similar, but with no restriction on the sides).
Cf. A210249 (gives row sums of this sequence for n >= 3).
Cf. A005044 (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1], `if`(i<1, [],
          zip((x, y)-> x+y, b(n, i-1), `if`(i>n, [],
                        [0, b(n-i, i)[]]), 0)))
        end:
    T:= n-> b(n, ceil(n/2)-1)[4..n+1][]:
    seq(T(n), n=3..20);  # Alois P. Heinz, Jul 15 2013
  • Mathematica
    Flatten[Table[p=IntegerPartitions[n]; Length[Select[p, Length[ # ]==k && #[[1]] < Total[Rest[ # ]]&]], {n,3,30}, {k,3,n}]]
    (* second program: *)
    QP = QPochhammer; T[n_, k_] := SeriesCoefficient[x^k*(1/QP[x, x, k] + x^(k - 2)/((x-1)*QP[x^2, x^2, k-1])), {x, 0, n}]; Table[T[n, k], {n, 3, 16}, {k, 3, n}] // Flatten (* Jean-François Alcover, Jan 08 2016 *)

Formula

G.f. for column k is x^k/(product_{i=1..k} 1-x^i) - x^(2k-2)/(1-x)/(product_{i=1..k-1} 1-x^(2i)).

A070094 Number of acute integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 5, 2, 5, 3, 3, 4, 6, 3, 6, 4, 7, 6, 10, 4, 10, 7, 8, 7, 10, 7, 14, 8, 12, 8, 17, 10, 17, 12, 13, 14, 20, 12, 21, 14, 18, 16, 25, 15, 23, 18, 22, 20, 30, 16, 32, 21, 29, 23, 32, 21, 38, 27, 33, 26, 43, 25
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070102(n) - A070109(n).

Examples

			For n=10 there are A005044(10) = 2 integer triangles: [2,4,4] and [3,3,4]; both are acute, but GCD(2,4,4)>1, therefore a(9) = 1.
		

Crossrefs

A070098 Number of integer triangles with perimeter n which are acute and isosceles.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 14, 15, 15, 16, 15
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Equivalently, the number of obtuse isosceles integer triangles with base n. - Charlie Marion, Jun 18 2019

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; both isosceles are also acute.
		

Crossrefs

Programs

  • Magma
    [Floor(k/2)-Floor(k/(2 + Sqrt(2)))-((k + 1) mod 2): k in [1..76]]; // Marius A. Burtea, Jun 21 2019

Formula

a(n) = A070093(n)-A024154(n); a(n) = A059169(n)-A070106(n).
a(n) = floor(n/2) - floor(n/(2 + sqrt(2))) - ((n + 1) mod 2). - David Pasino, Jun 27 2016
a(n) = A004526(n-1) - A183138(n). - R. J. Mathar, May 22 2019

A070102 Number of obtuse integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 2, 1, 3, 2, 3, 2, 5, 3, 6, 2, 8, 5, 9, 5, 9, 6, 11, 6, 14, 9, 14, 9, 17, 11, 19, 12, 19, 15, 23, 13, 27, 18, 26, 16, 32, 20, 33, 21, 34, 26, 40, 23, 42, 29, 42, 29, 50, 32, 53, 35, 48, 41, 58, 37, 64, 45, 60, 42, 71
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

a(n) = A051493(n) - A070094(n) - A070109(n).

Examples

			For n=9 there are A005044(9)=3 integer triangles: [1,4,4], [2,3,4] and [3,3,3]; only one of them is obtuse: 2^2+3^2<16=4^2 and GCD(2,3,4)=1, therefore a(9)=1.
		

Crossrefs

A325688 Number of length-3 compositions of n such that every distinct consecutive subsequence has a different sum.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 5, 12, 12, 25, 24, 40, 41, 60, 60, 85, 84, 112, 113, 144, 144, 181, 180, 220, 221, 264, 264, 313, 312, 364, 365, 420, 420, 481, 480, 544, 545, 612, 612, 685, 684, 760, 761, 840, 840, 925, 924, 1012, 1013, 1104, 1104, 1201, 1200, 1300, 1301, 1404
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Confirmed recurrence relation from Colin Barker for n <= 5000. - Fausto A. C. Cariboni, Feb 13 2022

Examples

			The a(3) = 1 through a(8) = 12 compositions:
  (111)  (113)  (114)  (115)  (116)
         (122)  (132)  (124)  (125)
         (221)  (222)  (133)  (143)
         (311)  (231)  (142)  (152)
                (411)  (214)  (215)
                       (223)  (233)
                       (241)  (251)
                       (322)  (332)
                       (331)  (341)
                       (412)  (512)
                       (421)  (521)
                       (511)  (611)
		

Crossrefs

Column k = 3 of A325687.
Cf. A000217 (all length-3).

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],UnsameQ@@Total/@Union[ReplaceList[#,{_,s__,_}:>{s}]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: x^3*(1 + 2*x^2 + 4*x^3 + 5*x^4) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)

A325690 Number of length-3 integer partitions of n whose largest part is not the sum of the other two.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 4, 3, 7, 6, 10, 9, 14, 13, 19, 17, 24, 23, 30, 28, 37, 35, 44, 42, 52, 50, 61, 58, 70, 68, 80, 77, 91, 88, 102, 99, 114, 111, 127, 123, 140, 137, 154, 150, 169, 165, 184, 180, 200, 196, 217, 212, 234, 230, 252, 247, 271, 266, 290, 285, 310
Offset: 0

Views

Author

Gus Wiseman, May 15 2019

Keywords

Comments

Confirmed recurrence relation from Colin Barker for n <= 10000. - Fausto A. C. Cariboni, Feb 19 2022

Examples

			The a(3) = 1 through a(13) = 14 partitions (A = 10, B = 11):
  (111)  (221)  (222)  (322)  (332)  (333)  (433)  (443)  (444)   (544)
         (311)  (411)  (331)  (521)  (432)  (442)  (533)  (543)   (553)
                       (421)  (611)  (441)  (622)  (542)  (552)   (643)
                       (511)         (522)  (631)  (551)  (732)   (652)
                                     (531)  (721)  (632)  (741)   (661)
                                     (621)  (811)  (641)  (822)   (733)
                                     (711)         (722)  (831)   (742)
                                                   (731)  (921)   (751)
                                                   (821)  (A11)   (832)
                                                   (911)          (841)
                                                                  (922)
                                                                  (931)
                                                                  (A21)
                                                                  (B11)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],#[[1]]!=#[[2]]+#[[3]]&]],{n,0,30}]

Formula

Conjectures from Colin Barker, May 15 2019: (Start)
G.f.: x^3*(1 + x^2 + x^3 + x^4) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8.
(End)

A334607 Number of Pythagorean triangles with perimeter A010814(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 3, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 5, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Wesley Ivan Hurt, May 08 2020

Keywords

Examples

			a(1) = 1; There is one integer-sided right triangle with perimeter A010814(1) = 12, [3,4,5].
a(2) = 1; There is one integer-sided right triangle with perimeter A010814(2) = 24, [6,8,10].
		

Crossrefs

A107572 List of triples a,b,c that are sidelengths of a scalene triangle; a

Original entry on oeis.org

2, 3, 4, 2, 4, 5, 3, 4, 5, 2, 5, 6, 3, 4, 6, 3, 5, 6, 2, 6, 7, 3, 5, 7, 4, 5, 6, 3, 6, 7, 4, 5, 7, 2, 7, 8, 3, 6, 8, 4, 5, 8, 4, 6, 7, 3, 7, 8, 4, 6, 8, 5, 6, 7, 2, 8, 9, 3, 7, 9, 4, 6, 9, 4, 7, 8, 5, 6, 8, 3, 8, 9, 4, 7, 9, 5, 6, 9, 5, 7, 8, 2, 9, 10, 3, 8, 10, 4, 7, 10, 4, 8, 9, 5, 6, 10, 5, 7, 9, 6, 7, 8, 3
Offset: 1

Views

Author

Clark Kimberling, May 16 2005

Keywords

Comments

The number of such triangles of perimeter n+6 is Alcuin's sequence, as noted at A005044.

Examples

			(2,3,4) is the least such triangle, followed by (2,4,5) and then (3,4,5).
		

Crossrefs

A124287 Triangle of the number of integer-sided k-gons having perimeter n, for k=3..n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 1, 5, 4, 4, 1, 1, 3, 7, 9, 7, 4, 1, 1, 2, 9, 13, 15, 8, 5, 1, 1, 4, 13, 23, 25, 20, 10, 5, 1, 1, 3, 16, 29, 46, 37, 29, 12, 6, 1, 1, 5, 22, 48, 72, 75, 57, 35, 14, 6, 1, 1, 4, 25, 60, 113, 129, 125, 79, 47, 16, 7, 1, 1, 7, 34, 92, 172, 228, 231, 185
Offset: 3

Views

Author

T. D. Noe, Oct 24 2006

Keywords

Comments

Rotations and reversals are counted only once. For a k-gon to be nondegenerate, the longest side must be shorter than the sum of the remaining sides. Column k=3 is A005044, column k=4 is A057886, column k=5 is A124285 and column k=6 is A124286. Note that A124278 counts polygons whose sides are nondecreasing.

Examples

			For polygons having perimeter 7: 2 triangles, 3 quadrilaterals, 3 pentagons, 1 hexagon and 1 heptagon. The triangle begins
1
0 1
1 1 1
1 2 1 1
2 3 3 1 1
1 5 4 4 1 1
		

Crossrefs

Row sums are A293818.
Cf. A293819.

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; Table[p=Partitions[n]; Table[s=Select[p,Length[ # ]==k && #[[1]]Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
  • PARI
    T(n,k)={(sumdiv(gcd(n, k), d, eulerphi(d)*binomial(n/d, k/d))/n + binomial(k\2 + (n-k)\2, k\2) - binomial(n\2, k-1) - binomial(n\4, k\2) - if(k%2, 0, binomial((n+2)\4, k\2)))/2;}
    for(n=3, 10, for(k=3, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 21 2017

Formula

A formula is given in Theorem 1.5 of the East and Niles article.
Previous Showing 31-40 of 126 results. Next