cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A081640 a(n) = n-th prime of class 12- according to the Erdős-Selfridge classification.

Original entry on oeis.org

14920303, 18224639, 24867247, 26532953, 34548443, 38003011, 39800743, 41319599, 41443483, 45604771, 46432667, 47247763, 49734341, 49734493, 49749439, 51591833, 53014667, 55257977, 59681383, 59700749, 60804817
Offset: 1

Views

Author

Robert G. Wilson v, Mar 23 2003

Keywords

Comments

The first 184 resp. 300 terms of A081430 allow us to deduce 44 resp. 84 consecutive terms of this sequence. - M. F. Hasler, Apr 05 2007

Examples

			a(1) = 14920303 = 1+2*A081430(3)*3 is the smallest 12- prime
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3610000], ClassMinusNbr[ Prime[ # ]] == 12 &]]
  • PARI
    nextclassminus( a, p=1, n=[] )={ while( p, n=concat(n,p); p=0; for( i=1,#a, if( p & 2*a[i] >= p-1, break); for( k=ceil(n[ #n]/2/a[i]),a[ #a]/a[i], if( p & 2*k*a[i] >= p-1, break); if( isprime(2*k*a[i]+1), p=2*k*a[i]+1; break(1+(k==1)); ))));vecextract(n,"^1")}; A081640 = nextclassminus(A081430) \\ M. F. Hasler, Apr 05 2007

Formula

{ a(n) } = { p = 2*m*A081430(k)+1 | k=1,2,...,oo and m=1,2,... such that p is prime and m has no factor of class > 11- } - M. F. Hasler, Apr 05 2007

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 21 2007

A081641 a(n) = n-th prime of class 13- according to the Erdős-Selfridge classification.

Original entry on oeis.org

36449279, 53065907, 59681213, 69096887, 132756479, 135388367, 164255999, 179043637, 188991053, 207290663, 241560239, 279709259, 309550999, 364492781, 372993983, 377982103, 398007431, 406165099, 425633717, 445901987, 447609067, 516737983
Offset: 1

Views

Author

Robert G. Wilson v, Mar 23 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[23733333], ClassMinusNbr[ Prime[ # ]] == 12 &]]
  • PARI
    A081641 = nextclassminus(A081640) /* cf. A081640 - M. F. Hasler, Apr 05 2007 */

Extensions

Edited by N. J. A. Sloane, May 14 2008 at the suggestion of R. J. Mathar.

A129472 Primes p of Erdos-Selfridge class 4+ with largest prime factor of p+1 not of class 3+.

Original entry on oeis.org

3181, 4513, 4957, 6067, 7177, 8731, 9397, 10433, 13171, 14947, 15761, 17389, 19387, 19609, 22051, 22273, 22453, 22717, 23531, 23753, 24197, 26161, 27823, 28711, 37369, 37591, 38183, 38923, 39293, 40993, 41143, 42697, 43067, 44621, 44843
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 3181 = -1+2*37*43 is a prime of class 4+ since 37 is of class 3+, but the largest divisor of 3181+1 is 43 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129472(n=100,p=1,a=[])={ local(f); while( #a 3 & 3 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 4 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 4, a=concat(a,p); /*print(#a," ",p)*/)); a}

A173062 Primes of the form 2^r * 13^s - 1.

Original entry on oeis.org

3, 7, 31, 103, 127, 337, 1663, 5407, 8191, 131071, 346111, 524287, 2970343, 3655807, 22151167, 109051903, 617831551, 1631461441, 2007952543, 2147483647, 32127240703, 194664464383, 275716983697, 958348132351, 1357375919743, 1670616516607, 49834102882303, 57349132609183
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 09 2010

Keywords

Comments

s = 0 is "trivial" case of Mersenne primes: 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ...
Mersenne prime exponents r: 2, 3, 5, 7, 13, 17, 19, 31, ...
Necessarily r odd as for r = 2*k and p a prime of form 6*n+1: 2^(2*k) * p^j - 1 a multiple of 3.
Proof by induction with 2^2 * p^1 - 1 = 4*(6*n+1) - 1 = 3*(8*n+1), 2^2(k+1) * p^j - 1 = 4* (2^k * p^j - 1) + 3.
No prime in case i = j = k (k>1) as a^k - 1 has divisor a - 1.

Examples

			2^2*13^0 - 1 = 3 = prime(2) => a(1).
2^3*13^1 - 1 = 103 = prime(27) => a(4).
2^7*13^9 - 1 = 1357375919743 = prime(50467169414) => a(25).
list of (r,s) pairs: (2,0), (3,0), (5,0), (3,1), (7,0), (1,2), (7,1), (5,2), (13,0), (17,0), (11,2), (19,0), (3,5), (7,4), (17,2), (23,1), (7,6), (1,8), (5,7), (31,0), (9,7), (19,5), (1,10), (25,4), (7,9), (11,8), (27,5), (5,11), (25,6), (19,8), (13,10), (3,13), (29,7), (5,14), (39,5), (15,13), (5,16), ...
		

References

  • Peter Bundschuh, Einfuehrung in die Zahlentheorie, Springer-Verlag GmbH Berlin, 2002.
  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications, 2005.
  • Paulo Ribenboim, Wilfrid Keller, and Joerg Richstein, Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(q=1/2, p, w=List([])); for(r=0, logint(nn, 2), q=2*q; p=q/13; for(s=0, logint(nn\q, 13), p=13*p; if(ispseudoprime(p-1), listput(w, p-1)))); Set(w); } \\ Jinyuan Wang, Feb 23 2020
    
  • Python
    from itertools import count, islice
    from sympy import integer_log, isprime
    def A173062_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(n):
            def f(x): return n+x-sum(((x+1)//13**i).bit_length() for i in range(integer_log(x+1,13)[0]+1))
            return bisection(f,n-1,n-1)
        return filter(lambda n:isprime(n), map(g,count(1)))
    A173062_list = list(islice(A173062_gen(),30)) # Chai Wah Wu, Mar 31 2025

Extensions

a(26)-a(28) from Jinyuan Wang, Feb 23 2020

A173236 Primes of the form 2^r * 13^s + 1.

Original entry on oeis.org

2, 3, 5, 17, 53, 257, 677, 3329, 13313, 35153, 65537, 2768897, 13631489, 2303721473, 3489660929, 4942652417, 11341398017, 10859007357953, 1594691292233729, 31403151600910337, 310144109150467073, 578220423796228097
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 13 2010

Keywords

Comments

Necessarily r is even (elementary proof by induction).
s=0 is (trivial) case of 2 and the known five Fermat primes: 2, 3, 5, 17, 257, 65537 (A092506).
Fermat prime exponents r are 0, 1, 2, 4, 8, 16.

Examples

			2^0*13^0 + 1 = 2 = prime(1) => a(1).
2^10*13^1 + 1 = 13313 = prime(1581) => a(9).
list of (r,s): (0,0), (1,0), (2,0), (4,0), (2,1), (8,0), (2,2), (8,1), (10,1), (4,3), (16,0), (14,2), (20,1), (20,3), (28,1), (10,6), (26,2), (10,9), (32,5), (40,4), (10,13), (22,10), (32,8), (48,4), (20,13), (2,18), (28,11), (50,6).
		

References

  • Emil Artin, Galoissche Theorie, Verlag Harri Deutsch, Zürich, 1973.
  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications, 2005.
  • Paulo Ribenboim, Wilfrid Keller, and Joerg Richstein, Die Welt der Primzahlen, Springer-Verlag GmbH Berlin, 2006.

Crossrefs

Programs

  • GAP
    K:=10^7;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    B:=List(A,i->Factors(i-1));;
    C:=[];;  for i in B do if Elements(i)=[2] or Elements(i)=[2,13] then Add(C,Position(B,i)); fi; od;
    A173236:=Concatenation([2],List(C,i->A[i])); # Muniru A Asiru, Sep 10 2017
    
  • Python
    from itertools import count, islice
    from sympy import isprime, integer_log
    def A173236_gen(): # generator of terms
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(n):
            def f(x): return n+x-sum(((x-1)//13**i).bit_length() for i in range(integer_log(x-1,13)[0]+1))
            return bisection(f,n+1,n+1)
        return filter(lambda n:isprime(n), map(g,count(1)))
    A173236_list = list(islice(A173236_gen(),30)) # Chai Wah Wu, Mar 31 2025

A333646 Numbers k divisible by the largest prime factor of the sum of divisors of k; a(1) = 1.

Original entry on oeis.org

1, 6, 15, 28, 30, 33, 40, 42, 51, 66, 69, 84, 91, 95, 102, 105, 117, 120, 135, 138, 140, 141, 145, 159, 165, 182, 186, 190, 210, 213, 224, 231, 234, 255, 270, 273, 280, 282, 285, 287, 290, 295, 308, 318, 321, 330, 345, 357, 364, 395, 420, 426, 435, 440, 445, 455
Offset: 1

Views

Author

Amiram Eldar, Jun 05 2020

Keywords

Comments

Pomerance (1973) proved that all the harmonic numbers (A001599) are in this sequence.
If m is a product of distinct Mersenne primes (A046528), m > 1 and 3 | m, then 2*m is a term.
If p is a term of A005105 then, 6*p is a term for p > 3, and 3*p is a term if p is not a Mersenne prime (A000668).

Examples

			15 is a term since sigma(15) = 24, 3 is the largest prime factor of 24, and 15 is divisible by 3.
		

Crossrefs

A001599 and A105402 are subsequences.

Programs

  • Mathematica
    Select[Range[500], Divisible[#, FactorInteger[DivisorSigma[1, #]][[-1, 1]]] &]

Formula

Numbers k such that A071190(k) | k.

A354356 Numbers k such that sigma(k) is 3-smooth (has no larger prime factors than 3).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 21, 22, 23, 30, 31, 33, 34, 35, 42, 46, 47, 51, 53, 55, 62, 66, 69, 70, 71, 77, 85, 93, 94, 102, 105, 106, 107, 110, 115, 119, 127, 138, 141, 142, 154, 155, 159, 161, 165, 170, 186, 187, 191, 210, 213, 214, 217, 230, 231, 235, 238, 253, 254, 255, 265, 282, 310, 318, 321, 322, 329
Offset: 1

Views

Author

Antti Karttunen, May 24 2022

Keywords

Comments

The prime terms in this sequence are in A005105. - Amiram Eldar, May 25 2022

Crossrefs

Cf. A000203, A065333, A354355 (characteristic function).
Cf. A005105, A046528, A354357 (subsequences).
Cf. also A122254.

Programs

A376699 Positions of primes in the sequence of numbers of the form 2^i * 3^j - 1 (A069353).

Original entry on oeis.org

3, 4, 5, 6, 8, 10, 11, 13, 15, 16, 18, 21, 22, 25, 31, 32, 36, 39, 40, 42, 51, 57, 61, 63, 65, 66, 71, 73, 79, 82, 94, 97, 106, 107, 110, 120, 121, 127, 128, 129, 130, 138, 142, 144, 161, 192, 204, 205, 212, 216, 232, 234, 244, 259, 264, 265, 308, 329, 346, 348
Offset: 1

Views

Author

Amiram Eldar, Oct 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{lim = 10^10}, Position[Sort@ Flatten@ Table[2^i*3^j - 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], _?PrimeQ] // Flatten]
  • PARI
    lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j - 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(i, ", ")));}
    
  • Python
    from itertools import count, islice
    from sympy import isprime, integer_log
    def A069353(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x+1)//3**i).bit_length() for i in range(integer_log(x+1,3)[0]+1))
        return bisection(f,n-1,n-1)
    def A376699_gen(): # generator of terms
        return filter(lambda n:isprime(A069353(n)), count(1))
    A376699_list = list(islice(A376699_gen(),30)) # Chai Wah Wu, Mar 31 2025

Formula

A069353(a(n)) = A003586(a(n)) - 1 = A005105(n).

A101253 a(n) = n-th prime of Erdős-Selfridge classification n+.

Original entry on oeis.org

2, 19, 113, 617, 1877, 8753, 52517, 255043, 1532173, 9287521, 48499459, 353653063, 2136716521, 18171787987, 111795382441
Offset: 1

Views

Author

Jonathan Vos Post, Dec 16 2004

Keywords

Comments

Diagonalization of the Erdős-Selfridge classification of primes n+. See A101231 for diagonalization of the Erdős-Selfridge classification of primes n-.

Examples

			a(1) = 2 because 2 is the first element of A005105.
a(2) = 19 because 19 is the 2nd element of A005106.
a(3) = 113 because 113 is the 3rd element of A005107.
a(4) = 617 because 617 is the 4th element of A005108.
a(5) = 1877 because 1877 is the 5th element of A081633.
a(6) = 8753 because 8753 is the 6th element of A081634.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Extensions

More terms from David Wasserman, Mar 26 2008

A268640 Primes of the form 2^i * 3^j - 1 for positive i, j.

Original entry on oeis.org

5, 11, 17, 23, 47, 53, 71, 107, 191, 383, 431, 647, 863, 971, 1151, 2591, 4373, 6143, 6911, 8747, 13121, 15551, 23327, 27647, 62207, 73727, 139967, 165887, 294911, 314927, 442367, 472391, 497663, 786431, 995327, 1062881, 2519423, 10616831, 17915903, 18874367
Offset: 1

Views

Author

Muniru A Asiru, Oct 15 2017

Keywords

Comments

a(n) is congruent to 5 (mod 6).

Examples

			a(1) = 5 = 2^1 * 3^1 - 1.
a(2) = 11 = 2^2 * 3^1 - 1.
a(3) = 17 = 2^1 * 3^2 - 1.
a(4) = 23 = 2^3 * 3^1 - 1.
a(5) = 47 = 2^4 * 3^1 - 1.
List of (i, j): (1, 1), (2, 1), (1, 2), (3, 1), (4, 1), (1, 3), (3, 2), (2, 3), (6, 1), (7, 1), (4, 3), (3, 4), (5, 3), (2, 5), (7, 2), (5, 4), ...
		

Crossrefs

Programs

  • GAP
    K:=10^7+1;; # to get all terms <= K.
    A:=Filtered([1..K],IsPrime);;
    A268640:=List(Positions(List(A,i->Elements(Factors(i+1))),[2,3]),i->A[i]);
  • Maple
    N:= 10^10: # to get all terms <= N
    R:= {}:
    for b from 1 to floor(log[3]((N+1)/2)) do
         R:= R union select(isprime, {seq(2^a*3^b-1,
              a=1..ilog2((N+1)/3^b))})
    od:
    sort(convert(R,list)); # Robert Israel, Oct 15 2017

Formula

{ A005105 } \ { 2 } \ { A000668 }.
Previous Showing 31-40 of 52 results. Next