cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 60 results. Next

A005162 Number of alternating sign n X n matrices symmetric with respect to both diagonals.

Original entry on oeis.org

1, 2, 3, 8, 15, 52, 126, 568, 1782, 10436, 42471, 323144, 1706562, 16866856, 115640460, 1484714416, 13216815036, 220426128584, 2548124192970
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.

Formula

Robbins gives a simple (conjectured) formula.

A006066 Kobon triangles: maximal number of nonoverlapping triangles that can be formed from n lines drawn in the plane.

Original entry on oeis.org

0, 0, 1, 2, 5, 7, 11, 15, 21, 25, 32, 38, 47
Offset: 1

Views

Author

Keywords

Comments

The known values a = a(n) and upper bounds U (usually A032765(n)) with name of discoverer of the arrangement when known are as follows:
n a U [Found by]
------------------------------
1 0 0
2 0 0
3 1 1
4 2 2
5 5 5
6 7 7
7 11 11
8 15 16
9 21 21
10 25 25 [Grünbaum]
11 32 33 [32-triangle solutions found by Honma and Kabanovitch; proved maximal by Savchuk 2025]
12 38 38 [Kabanovitch]
13 47 47 [Kabanovitch]
14 >= 53 54 [Bader]
15 65 65 [Suzuki]
16 72 72 [Bader]
17 85 85 [Bader]
18 >= 93 94 [Bader]
19 107 107 [Wood]
20 >= 116 117 [Wood]
21 133 133 [Savchuk]
22 >= 143 144 [Savchuk]
23 161 161 [Savchuk]
24 >= 172 173 [Savchuk]
25 191 191 [Bartholdi]
26 ? 205
27 225 225 [Savchuk]
28 ? 239
29 261 261 [Bartholdi]
30 ? 276
31 299 299 [Wood]
32 ? 316
33 341 341 [Bartholdi]
Ed Pegg's web page gives the upper bound for a(6) as 8. But by considering all possible arrangements of 6 lines - the sixth term of A048872 - one can see that 8 is impossible. - N. J. A. Sloane, Nov 11 2007
Although they are somewhat similar, this sequence is strictly different from A084935, since A084935(12) = 48 exceeds the upper bound on a(12) from A032765. - Floor van Lamoen, Nov 16 2005
The name is sometimes incorrectly entered as "Kodon" triangles.
Named after the Japanese puzzle expert and mathematics teacher Kobon Fujimura (1903-1983). - Amiram Eldar, Jun 19 2021

Examples

			a(17) = 85 because the a configuration with 85 exists meeting the upper bound.
		

References

  • Nicolas Bartholdi, Jérémy Blanc, and Sébastien Loisel, "On simple arrangements of lines and pseudo-lines in P^2 and R^2 with the maximum number of triangles", 2008, in Goodman, Jacob E.; Pach, János; Pollack, Richard (eds.), Surveys on Discrete and Computational Geometry: Proceedings of the 3rd AMS-IMS-SIAM Joint Summer Research Conference "Discrete and Computational Geometry—Twenty Years Later" held in Snowbird, UT, June 18-22, 2006, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 105-116, doi:10.1090/conm/453/08797, ISBN 978-0-8218-4239-3, MR 2405679
  • Martin Gardner, Wheels, Life and Other Mathematical Amusements, Freeman, NY, 1983, pp. 170, 171, 178. Mentions that the problem was invented by Kobon Fujimura.
  • Branko Grünbaum, Convex Polytopes, Wiley, NY, 1967; p. 400 shows that a(10) >= 25.
  • Viatcheslav Kabanovitch, Kobon Triangle Solutions, Sharada (Charade, by the Russian puzzle club Diogen), pp. 1-2, June 1999.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

An upper bound on this sequence is given by A032765.
For any odd n > 1, if n == 1 (mod 6), a(n) <= (n^2 - (2n + 2))/3; in other odd cases, a(n) <= (n^2 - 2n)/3. For any even n > 0, if n == 4 (mod 6), a(n) <= (n^2 - (2n + 2))/3, otherwise a(n) <= (n^2 - 2n)/3. - Sergey Pavlov, Feb 11 2017
The upper bound for even n can be improved: floor(n(n-7/3)/3), proven by Bartholdi et. al.

Extensions

a(15) = 65 found by Toshitaka Suzuki on Oct 02 2005. - Eric W. Weisstein, Oct 04 2005
Grünbaum reference from Anthony Labarre, Dec 19 2005
Additional links to Japanese web sites from Alexandre Wajnberg, Dec 29 2005 and Anthony Labarre, Dec 30 2005
A perfect solution for 13 lines was found in 1999 by Kabanovitch. - Ed Pegg Jr, Feb 08 2006
Updated with results from Johannes Bader (johannes.bader(AT)tik.ee.ethz.ch), Dec 06 2007, who says "Acknowledgments and dedication to Corinne Thomet".
a(11)-a(13) from Eric W. Weisstein, Jul 26 2025

A029729 Degree of the variety of pairs of commuting n X n matrices.

Original entry on oeis.org

1, 3, 31, 1145, 154881, 77899563, 147226330175, 1053765855157617, 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463, 1862632561783036151478238040096092649, 11143500837236042423379349834982088594105985
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)euclid.ucsd.edu), Dec 11 1999

Keywords

Comments

Also, ratio of vector elements of the ground state in the loop representation of the braid-monoid Hamiltonian H = Sum_i (3 - 2 e_i - b_i) with size 2n and periodic boundary conditions. Specifically the smallest element that corresponds to a non-crossing chord diagram, divided by the overall smallest element. We reduce the standard braid-monoid algebra to the Brauer algebra B_{2n}(1). - B. Nienhuis & J. de Gier (B.Nienhuis(AT)UvA.NL), May 13 2004. For a proof that this is the same sequence, see the articles by P. Di Francesco and P. Zinn-Justin and A. Knutson and P. Zinn-Justin.
These numbers arise in a similar way to A005130 and related sequences appear in the groundstate of the integrable Temperley-Lieb Hamiltonian.
It is also the weighted enumeration of lattice paths on an n X n square lattice going from the left side to the top side, with same initial and final orders of paths, and with a weight of 2 per vertex where a path turns 90 degrees. - Paul Zinn-Justin, Mar 05 2023

Examples

			n=1: Degree of C X C which is 1. n=2: The degree can be calculated by hand to be 3. n=3: See Macaulay manual (link above): one of steps in proof that variety for 3 X 3 is Cohen-Macaulay is to compute the degree which is 31. (n=4) Matt Clegg (CS at UCSD) and Nolan Wallach using 10 Sun Workstations and a distributed Grobner Basis package (in 1993).
(2(e1 + e2 + e3 + e4) + b1 + b2 + b3 + b4)(G + G e2 + b2)(e1 e3 b2) = 12 (G + G e2 + b2)(e1 e3 b2) with G = 3, therefore a(2) = 3
		

Crossrefs

Cf. A005130.

Formula

There is a formula in terms of divided differences operators (too complicated to reproduce here).

Extensions

Entry revised based on comments from Paul Zinn-Justin, Mar 14 2005
Terms a(12) and beyond from Paul Zinn-Justin, Mar 05 2023

A051055 'Connected' alternating sign n X n matrices, i.e., not made from smaller blocks.

Original entry on oeis.org

0, 1, 0, 1, 2, 59, 1092, 51412, 3420384, 382912420, 68021283668, 19474443244283, 9025228384142396, 6825775070789988992, 8486240219059861120000, 17454179683586670023001218, 59698062960218238908531091872
Offset: 0

Views

Author

Keywords

Comments

A003827 factors out the singleton components only, but many alternating sign matrices can be decomposed into larger pieces.

Examples

			a(4)=2 because of the alternating sign matrices {{0,1,0,0},{1,-1,1,0},{0,1,-1,1},{0,0,1,0}} and {{0,0,1,0},{0,1,-1,1},{1,-1,1,0},{0,1,0,0}}.
		

Crossrefs

Programs

  • Mathematica
    r[n_] = Product[(3k+1)!/(n+k)!, {k, 0, n-1}] ; a[n_] := a[n] = r[n] - (1/n)*Sum[k*Binomial[n, k]^2*r[n-k]*a[k], {k, 0, n-1}]; a[0] = 0; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Aug 01 2011, after Vladeta Jovovic *)

Formula

Sum_{k>=0} a(k)z^k/k!^2 = log(Sum_{k>=0} r(k)z^k/k!^2) where r(k) is the k-th Robbins number A005130(n).
a(n) = r(n) - (1/n)*Sum_{k=0..n-1} k*binomial(n, k)^2*r(n-k)*a(k), n > 0, a(0)=0, where r(k) is the k-th Robbins number A005130(n). - Vladeta Jovovic, Mar 16 2000

Extensions

More terms from Vladeta Jovovic, Mar 16 2000

A059476 Number of 4n X 4n quarter-turn symmetric alternating-sign matrices (QTSASM's).

Original entry on oeis.org

1, 2, 40, 6860, 9779616, 114640611228, 10995014015567296, 8604220484134405095680, 54849585336544518476372715520, 2845241019832977820277705514596768000, 1200139922362764777157943140382976769515000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Formula

a(n) = A059475(n)*A005130(n)^2.

A107252 a(n) = Product_{k=0..n-1} (n+k)!/(k+1)!.

Original entry on oeis.org

1, 1, 6, 1440, 36288000, 184354652160000, 309071606732292096000000, 254046582743105184577722777600000000, 142518177743863255019484504453155074867200000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*3!*1!*2!) = 34560/24 = 1440.
		

Crossrefs

Programs

  • Magma
    [1] cat [(&*[Factorial(n+k)/Factorial(k+1): k in [0..n-1]]): n in [1..10]]; // G. C. Greubel, May 21 2019
    
  • Mathematica
    Table[Product[(n+k)!/(k+1)!,{k,0,n-1}],{n,0,10}] (* Alexander Adamchuk, Jul 10 2006 *)
    a[n_] := (BarnesG[1 + 2 n] n! ((BarnesG[2 + n] Gamma[2 + n])/ BarnesG[3 + n])^(-1 + n))/BarnesG[2 + n]^2; Table[a[n], {n, 0, 10}] (* Peter Luschny, May 20 2019 *)
  • PARI
    {a(n) = prod(k=0,n-1, (n+k)!/(k+1)!)}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    [product(factorial(n+k)/factorial(k+1) for k in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

a(n) = (n+1)!*(n+2)!*...*(2n-1)!/(1!*2!*...*(n-1)!).
a(n) = A000178(2n-1)/(A000178(n)*A000178(n-1)).
a(n) = A079478(n)/A001813(n).
a(n) = A079478(n-1)*A006963(n+1).
a(n) = A107251(n)/A000108(n).
a(n) = A107251(n-1)*A009445(n-1).
a(n) = A107254(n)/A000142(n).
a(n) = A009963(2n-1, n-1).
a(n) = A009963(2n-1, n).
a(n) = (G(1+2*n)*n!*((G(2+n)*Gamma(2+n))/G(3+n))^(n-1))/G(2+n)^2, where G(x) is the Barnes G function. - Peter Luschny, May 20 2019
a(n) ~ A * 2^(2*n^2 - 7/12) * n^(n^2 - n - 5/12) / (sqrt(Pi) * exp(3*n^2/2 - n + 1/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 21 2019

A231498 Dimensions of algebraic generators of Hopf algebra ASM.

Original entry on oeis.org

0, 1, 1, 4, 29, 343, 6536, 202890, 10403135, 889855638, 127697994191, 30835684607975, 12548984661501958, 8614128967701807873, 9978249783441321029726, 19509076435279656169459710, 64388117502939421121766340671, 358740327955249666636651777774959
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2013

Keywords

Comments

Number of alternating sign matrices of size n which are indecomposable by direct sum. - Ludovic Schwob, Feb 11 2023

Crossrefs

Cf. A005130.

Formula

G.f.: A(x) = 1 - 1/ASM(x) where ASM(x) is the g.f. of A005130. - Ludovic Schwob, Feb 11 2023

Extensions

More terms from Ludovic Schwob, Feb 11 2023

A293930 Number of circularly chained n X n alternating sign matrices.

Original entry on oeis.org

1, 2, 20, 40, 3430, 6860
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2017

Keywords

Crossrefs

A384062 Number of maximal antichains in the Bruhat order of type A_n.

Original entry on oeis.org

2, 4, 43, 183667
Offset: 1

Views

Author

Dmitry I. Ignatov, May 18 2025

Keywords

Comments

The number of maximal antichains in the Bruhat order of the Weyl group A_n (isomorphic to the symmetric group S_{n+1}).

Examples

			For n=1 the elements are 1 (identity) and s1, the order contains pair (1, s1). The maximal antichains are {1} and {s1}.
For n=2 the line (Hasse) diagram is below.
       s1*s2*s1
        /   \
      s2*s1 s1*s2
       |  X  |
       s2    s1
        \   /
          1
The set of maximal antichains is {{1}, {s2, s1}, {s2*s1, s1*s2}, {s1*s2*s1}}.
		

References

  • A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
  • V. V. Deodhar, On Bruhat ordering and weight-lattice ordering for a Weyl group, Indagationes Mathematicae, vol. 81, 1 (1978), 423-435.

Crossrefs

Cf. A000142 (the order size), A005130 (the size of Dedekind-MacNeille completion), A384061.

A059491 Expansion of generating function A_{QT}^(1)(4n;3).

Original entry on oeis.org

1, 1, 6, 189, 30618, 25332021, 106698472452, 2283997201168644, 248218139523497121576, 136861610819571430116630660, 382684747771430768732371981946100, 5424628155237728987530088501811168904125, 389729317367139375014273384868937660572301897500
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2001

Keywords

Programs

  • Mathematica
    f[n_] := Product[(3 k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[3^(n*(n - 1)/2)*f[n], {n,0,20}] (* G. C. Greubel, Sep 10 2017 *)

Formula

a(n) = 3^(n*(n-1)/2)*A005130(n).
a(n+1) is the Hankel transform of A097188. Odd terms occur in a(n+1) at positions given by 2*A000975(n). - Paul Barry, Feb 09 2007
Previous Showing 31-40 of 60 results. Next