A005162
Number of alternating sign n X n matrices symmetric with respect to both diagonals.
Original entry on oeis.org
1, 2, 3, 8, 15, 52, 126, 568, 1782, 10436, 42471, 323144, 1706562, 16866856, 115640460, 1484714416, 13216815036, 220426128584, 2548124192970
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
- Mireille Bousquet-Mélou and Laurent Habsieger, Sur les matrices à signes alternants, [On alternating-sign matrices] in Formal power series and algebraic combinatorics (Montreal, PQ, 1992) pp. 19-32; Discrete Math. 139 (1995), 57-72. See Table 1, p. 71.
- D. P. Robbins, Symmetry classes of alternating sign matrices, arXiv:math/0008045 [math.CO], 2000.
- R. P. Stanley, A baker's dozen of conjectures concerning plane partitions, pp. 285-293 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986. Preprint. [Annotated scanned copy]
A006066
Kobon triangles: maximal number of nonoverlapping triangles that can be formed from n lines drawn in the plane.
Original entry on oeis.org
0, 0, 1, 2, 5, 7, 11, 15, 21, 25, 32, 38, 47
Offset: 1
a(17) = 85 because the a configuration with 85 exists meeting the upper bound.
- Nicolas Bartholdi, Jérémy Blanc, and Sébastien Loisel, "On simple arrangements of lines and pseudo-lines in P^2 and R^2 with the maximum number of triangles", 2008, in Goodman, Jacob E.; Pach, János; Pollack, Richard (eds.), Surveys on Discrete and Computational Geometry: Proceedings of the 3rd AMS-IMS-SIAM Joint Summer Research Conference "Discrete and Computational Geometry—Twenty Years Later" held in Snowbird, UT, June 18-22, 2006, Contemporary Mathematics, vol. 453, Providence, Rhode Island: American Mathematical Society, pp. 105-116, doi:10.1090/conm/453/08797, ISBN 978-0-8218-4239-3, MR 2405679
- Martin Gardner, Wheels, Life and Other Mathematical Amusements, Freeman, NY, 1983, pp. 170, 171, 178. Mentions that the problem was invented by Kobon Fujimura.
- Branko Grünbaum, Convex Polytopes, Wiley, NY, 1967; p. 400 shows that a(10) >= 25.
- Viatcheslav Kabanovitch, Kobon Triangle Solutions, Sharada (Charade, by the Russian puzzle club Diogen), pp. 1-2, June 1999.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Johannes Bader, Kobon Triangles.
- Johannes Bader, Kobon Triangles. [Cached copy, with permission, pdf format]
- Johannes Bader, Illustration showing a(17)=85, Nov 28 2007.
- Johannes Bader, Illustration showing a(17)=85, Nov 28 2007. [Cached copy, with permission]
- Nicolas Bartholdi, Jérémy Blanc, and Sébastien Loisel, On simple arrangements of lines and pseudo-lines in P^2 and R^2 with the maximum number of triangles, arXiv:0706.0723 [math.CO], 2007.
- Nicolas Bartholdi, Jérémy Blanc, Sébastien Loisel, and Pavlo Savchuk, Illustration showing a(33) = 341, 2008.
- Gilles Clement and Johannes Bader, Tighter Upper Bound for the Number of Kobon Triangles, Unpublished, 2007.
- Gilles Clement and Johannes Bader, Tighter Upper Bound for the Number of Kobon Triangles, Unpublished, 2007. [Cached copy, with permission]
- Martin Gardner, Letter to N. J. A. Sloane, Jun 20 1991.
- S. Honma, 三角形の最大数
- S. Honma, Illustration showing a(10)>=25
- S. Honma, Illustration showing a(11)>=32
- S. Honma, n本の直線でn(n-2)/3個の三角形が出来る条件についての考察: part 1, part 2, part 3.
- Ed Pegg, Jr., Kobon triangles, 2006.
- Ed Pegg, Jr., Kobon Triangles, 2006. [Cached copy, with permission, pdf format]
- Luis Felipe Prieto-Martínez, A list of problems in Plane Geometry with simple statement that remain unsolved, arXiv:2104.09324 [math.HO], 2021.
- Pavlo Savchuk, Constructing Optimal Kobon Triangle Arrangements via Table Encoding, SAT Solving, and Heuristic Straightening, arXiv:2507.07951 [math.CO], 2025. See pp. 1, 17.
- Pavlo Savchuk, Illustration showing a(21) = 133
- Pavlo Savchuk, Illustration showing a(23) = 161
- Pavlo Savchuk, Corresponding pseudo-line arrangement for the optimal n=23 solution
- Pavlo Savchuk, Illustration showing a(27) = 225
- Pavlo Savchuk, Illustration showing a(22) >= 143
- Pavlo Savchuk, Illustration showing a(24) >= 172
- N. J. A. Sloane, Illustration for a(5) = 5 (a pentagram)
- Alexandre Wajnberg, Illustration showing a(10) >= 25. [A different construction from Grünbaum's]
- Eric Weisstein's World of Mathematics, Kobon Triangle.
- Kyle Wood, Illustration showing a(19) = 107
- Kyle Wood, Illustration showing a(20) >= 116
- Kyle Wood, Illustration showing a(31) = 299
A perfect solution for 13 lines was found in 1999 by Kabanovitch. -
Ed Pegg Jr, Feb 08 2006
Updated with results from Johannes Bader (johannes.bader(AT)tik.ee.ethz.ch), Dec 06 2007, who says "Acknowledgments and dedication to Corinne Thomet".
A029729
Degree of the variety of pairs of commuting n X n matrices.
Original entry on oeis.org
1, 3, 31, 1145, 154881, 77899563, 147226330175, 1053765855157617, 28736455088578690945, 3000127124463666294963283, 1203831304687539089648950490463, 1862632561783036151478238040096092649, 11143500837236042423379349834982088594105985
Offset: 1
Nolan R. Wallach (nwallach(AT)euclid.ucsd.edu), Dec 11 1999
n=1: Degree of C X C which is 1. n=2: The degree can be calculated by hand to be 3. n=3: See Macaulay manual (link above): one of steps in proof that variety for 3 X 3 is Cohen-Macaulay is to compute the degree which is 31. (n=4) Matt Clegg (CS at UCSD) and Nolan Wallach using 10 Sun Workstations and a distributed Grobner Basis package (in 1993).
(2(e1 + e2 + e3 + e4) + b1 + b2 + b3 + b4)(G + G e2 + b2)(e1 e3 b2) = 12 (G + G e2 + b2)(e1 e3 b2) with G = 3, therefore a(2) = 3
- Paul Zinn-Justin, Table of n, a(n) for n = 1..16
- Jan de Gier, Loops, matchings and alternating-sign matrices, arXiv:math/0211285 [math.CO], 2002-2003.
- P. Di Francesco and P. Zinn-Justin, Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties, Comm. Math. Phys., 262(2):459-487, 2006; arXiv preprint, arXiv:math-ph/0412031, 2004-2005.
- A. Garbali and P. Zinn-Justin, Shuffle algebras, lattice paths and the commuting scheme, arXiv:2110.07155 [math.RT], 2021-2022. See also Macaulay2 code to generate the sequence.
- A. Knutson and P. Zinn-Justin, A scheme related to the Brauer loop model, Adv. Math., 214(1):40-77, 2007, arXiv preprint, arXiv:math/0503224 [math.AG], 2005-2006.
- Macaulay 2 Manual, Test of matrix routines, Viewed May 03 2016.
- M. J. Martins, B. Nienhuis, and R. Rietman, An Intersecting Loop Model as a Solvable Super Spin Chain, arXiv:cond-mat/9709051 [cond-mat.stat-mech], 1997; Phys. Rev. Lett. Vol. 81 (1998) pp. 504-507.
- Ada Stelzer and Alexander Yong, Combinatorial commutative algebra rules, arXiv:2306.00737 [math.CO], 2023.
A051055
'Connected' alternating sign n X n matrices, i.e., not made from smaller blocks.
Original entry on oeis.org
0, 1, 0, 1, 2, 59, 1092, 51412, 3420384, 382912420, 68021283668, 19474443244283, 9025228384142396, 6825775070789988992, 8486240219059861120000, 17454179683586670023001218, 59698062960218238908531091872
Offset: 0
a(4)=2 because of the alternating sign matrices {{0,1,0,0},{1,-1,1,0},{0,1,-1,1},{0,0,1,0}} and {{0,0,1,0},{0,1,-1,1},{1,-1,1,0},{0,1,0,0}}.
-
r[n_] = Product[(3k+1)!/(n+k)!, {k, 0, n-1}] ; a[n_] := a[n] = r[n] - (1/n)*Sum[k*Binomial[n, k]^2*r[n-k]*a[k], {k, 0, n-1}]; a[0] = 0; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Aug 01 2011, after Vladeta Jovovic *)
A059476
Number of 4n X 4n quarter-turn symmetric alternating-sign matrices (QTSASM's).
Original entry on oeis.org
1, 2, 40, 6860, 9779616, 114640611228, 10995014015567296, 8604220484134405095680, 54849585336544518476372715520, 2845241019832977820277705514596768000, 1200139922362764777157943140382976769515000000
Offset: 0
A107252
a(n) = Product_{k=0..n-1} (n+k)!/(k+1)!.
Original entry on oeis.org
1, 1, 6, 1440, 36288000, 184354652160000, 309071606732292096000000, 254046582743105184577722777600000000, 142518177743863255019484504453155074867200000000000
Offset: 0
a(3) = 1!*2!*3!*4!*5!/(1!*2!*3!*1!*2!) = 34560/24 = 1440.
-
[1] cat [(&*[Factorial(n+k)/Factorial(k+1): k in [0..n-1]]): n in [1..10]]; // G. C. Greubel, May 21 2019
-
Table[Product[(n+k)!/(k+1)!,{k,0,n-1}],{n,0,10}] (* Alexander Adamchuk, Jul 10 2006 *)
a[n_] := (BarnesG[1 + 2 n] n! ((BarnesG[2 + n] Gamma[2 + n])/ BarnesG[3 + n])^(-1 + n))/BarnesG[2 + n]^2; Table[a[n], {n, 0, 10}] (* Peter Luschny, May 20 2019 *)
-
{a(n) = prod(k=0,n-1, (n+k)!/(k+1)!)}; \\ G. C. Greubel, May 21 2019
-
[product(factorial(n+k)/factorial(k+1) for k in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 21 2019
A231498
Dimensions of algebraic generators of Hopf algebra ASM.
Original entry on oeis.org
0, 1, 1, 4, 29, 343, 6536, 202890, 10403135, 889855638, 127697994191, 30835684607975, 12548984661501958, 8614128967701807873, 9978249783441321029726, 19509076435279656169459710, 64388117502939421121766340671, 358740327955249666636651777774959
Offset: 0
A293930
Number of circularly chained n X n alternating sign matrices.
Original entry on oeis.org
1, 2, 20, 40, 3430, 6860
Offset: 1
- Heuer, Dylan, Chelsey Morrow, Ben Noteboom, Sara Solhjem, Jessica Striker, and Corey Vorland. "Chained permutations and alternating sign matrices - Inspired by three-person chess." Discrete Mathematics 340, no. 12 (2017): 2732-2752. Also arXiv:1611.03387
A384062
Number of maximal antichains in the Bruhat order of type A_n.
Original entry on oeis.org
2, 4, 43, 183667
Offset: 1
For n=1 the elements are 1 (identity) and s1, the order contains pair (1, s1). The maximal antichains are {1} and {s1}.
For n=2 the line (Hasse) diagram is below.
s1*s2*s1
/ \
s2*s1 s1*s2
| X |
s2 s1
\ /
1
The set of maximal antichains is {{1}, {s2, s1}, {s2*s1, s1*s2}, {s1*s2*s1}}.
- A. Bjorner, F. Brenti, Combinatorics of Coxeter Groups, Springer, 2009, 27-64.
- V. V. Deodhar, On Bruhat ordering and weight-lattice ordering for a Weyl group, Indagationes Mathematicae, vol. 81, 1 (1978), 423-435.
A059491
Expansion of generating function A_{QT}^(1)(4n;3).
Original entry on oeis.org
1, 1, 6, 189, 30618, 25332021, 106698472452, 2283997201168644, 248218139523497121576, 136861610819571430116630660, 382684747771430768732371981946100, 5424628155237728987530088501811168904125, 389729317367139375014273384868937660572301897500
Offset: 0
-
f[n_] := Product[(3 k + 1)!/(n + k)!, {k, 0, n - 1}]; Table[3^(n*(n - 1)/2)*f[n], {n,0,20}] (* G. C. Greubel, Sep 10 2017 *)
Comments