cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A076326 Number of connected 7-colorable (i.e., chromatic number <= 7) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11116, 261072, 11716406, 1006692303
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076319. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076327 Number of connected 8-colorable (i.e., chromatic number <= 8) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11117, 261079, 11716562, 1006700343
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076320. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A076328 Number of connected 9-colorable (i.e., chromatic number <= 9) simple graphs on n nodes.

Original entry on oeis.org

1, 1, 2, 6, 21, 112, 853, 11117, 261080, 11716570, 1006700555
Offset: 1

Views

Author

Eric W. Weisstein, Oct 06 2002

Keywords

Crossrefs

Formula

Inverse Euler transform of A076321. - Andrew Howroyd, Dec 02 2018

Extensions

a(10)-a(11) from Andrew Howroyd, Dec 02 2018

A126736 Triangle read by rows: T(n,k) (n>=2, k=2..n) gives number of connected graphs on n nodes with chromatic number n-k+1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 12, 5, 1, 4, 26, 64, 17, 1, 5, 46, 282, 475, 44, 1, 6, 74, 809, 5009, 5036, 182, 1, 7, 110, 1940, 27794, 149551, 80947, 730, 1, 8, 156, 4125, 113272, 1890221, 7694428, 2010328, 4032
Offset: 0

Views

Author

N. J. A. Sloane, Feb 16 2007

Keywords

Examples

			Array giving number of connected graphs on n nodes with chromatic number k begins:
n=...1...2...3...4....5....6.....7......8........9........10
k.------------------------------------------------------------
2|...0...1...1...3....5...17....44....182......730......4032
3|...0...0...1...2...12...64...475...5036....80947...2010328
4|...0...0...0...1....3...26...282...5009...149551...7694428
5|...0...0...0...0....1....4....46....809....27794...1890221
6|...0...0...0...0....0....1.....5.....74.....1940....113272
7|...0...0...0...0....0....0.....1......6......110......4125
8|...0...0...0...0....0....0.....0......1........7.......156
		

Crossrefs

First row of array is A005142.

A318870 Number of connected bipartite graphs on n unlabeled nodes with a distinguished bipartite block.

Original entry on oeis.org

1, 2, 1, 2, 4, 10, 27, 88, 328, 1460, 7799, 51196, 422521, 4483460, 62330116, 1150504224, 28434624153, 945480850638, 42417674401330, 2572198227615998, 211135833162079184, 23487811567341121158, 3545543330739039981738, 727053904070651775719646
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

Essentially the same as A007776. - Georg Fischer, Oct 02 2018

Examples

			a(1) = 2 because the single node can either be in the distinguished bipartite block or not.
a(2) = 1 because the only connected bipartite graph on two nodes is the complete graph on two nodes.
a(3) = 2 because the only connected bipartite graph on three nodes is the path graph on three nodes and there is a choice about which nodes are in the distinguished block.
		

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Flatten @ Table[Map[ Function[{p}, p + j*x^i], b[n - i*j, i - 1]], {j, 0, n/i}]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    b[d_] := Sum[A[n, d - n], {n, 0, d}];
    Join[{1}, EULERi[Array[b, 23]]] (* Jean-François Alcover, Sep 13 2018, after Alois P. Heinz in A049312 *)

Formula

Inverse Euler transform of A049312.

A318869 Inverse Euler transform of A122082.

Original entry on oeis.org

1, 2, 2, 8, 37, 270, 3049, 56576, 1795917, 100752972, 10189362127, 1879720761478, 637617233746767, 400169631649617320, 467115844246535037894, 1018822456144129013291710, 4169121243929999971120036590, 32126195519194538602120203293590
Offset: 0

Views

Author

Andrew Howroyd, Sep 04 2018

Keywords

Comments

This sequence is an intermediate step in the computation of A005142 and A123549.
The combinatoric interpretation is that of connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged plus pairs of identical connected bicolored graphs on n nodes each which are not invariant when the two color classes are interchanged. The former is A123549(n) and the later is A005142(n) for odd n and A005142(n) - A123549(n/2) for even n.

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total @ Quotient[v+1, 2]
    b[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Join[{1}, EULERi[Array[b, 20]]] (* Jean-François Alcover, Sep 13 2018, after Andrew Howroyd *)

A008323 Number of simple connected regular bipartite graphs with 2n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 12, 34, 218, 4278, 431165, 162267174, 201636689352, 777816803938932, 9865957936943859185, 395886667549681686369527, 53716176608076643470380213991, 23524515269630339982914608683548933, 35682168849414944013547274439525153167248
Offset: 0

Views

Author

Keywords

Crossrefs

For n > 1, these are the row sums of triangle A008326.

Extensions

a(10) corrected and a(11) added by Brendan McKay, Sep 06 2018
a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Apr 03 2020

A116079 Number of connected triangle-free graphs on n nodes with chromatic number 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 15, 85, 650, 5800, 65243, 931258, 17182237, 414512599, 13161989059
Offset: 1

Views

Author

N. J. A. Sloane, based on email from Keith Briggs, Mar 21 2006

Keywords

Examples

			Table of number of connected triangle-free graphs on n nodes with chromatic number k begins:
(The first row is the same as the number of connected bipartite graphs on n nodes, A005142)
n=...1...2...3...4...5....6....7.....8.....9.....10......11.......12.........13
k.-----------------------------------------------------------------------------
2|...0...1...1...3...5...17...44...182...730...4032...25598...212780....2241730 (A005142)
3|...0...0...0...0...1....2...15....85...650...5800...65243...931258...17182237 (the present sequence)
4|...0...0...0...0...0....0....0.....0.....0......0.......1.......23.......1085 (A126741)
		

Extensions

a(14) from Michael Sollami, Jan 29 2012
a(15) from Michael Sollami, Feb 04 2012

A123549 Number of unlabeled connected bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.

Original entry on oeis.org

1, 1, 2, 7, 36, 265, 3039, 56532, 1795771, 100752242, 10189358360, 1879720735880, 637617233537026, 400169631647375590, 467115844246503901102, 1018822456144128438039598, 4169121243929999956903622399, 32126195519194538601647462868271
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums of A123550.

Programs

Formula

a(n) = 2*A005142(2*n) - A318870(2*n). - Andrew Howroyd, Sep 04 2018

Extensions

a(0)=1 prepended and terms a(8) and beyond from Andrew Howroyd, Sep 04 2018

A157051 Number of connected unlabeled non-bipartite graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 1, 3, 16, 95, 809, 10935, 260350, 11712539, 1006674967, 164059617696, 50335905627489, 29003487431654737, 31397381142185989848, 63969560113210957966315, 245871831682083553779103249, 1787331725248899067681312999794, 24636021429399867654036551645873645, 645465483198722799426625560872826564232
Offset: 0

Views

Author

Max Alekseyev, Feb 22 2009

Keywords

Comments

Inverse Euler transform of A157016.

Programs

Formula

a(n) = A001349(n) - A005142(n).

Extensions

a(0) corrected, a(18)-a(20) added by Max Alekseyev, Jun 24 2013
Previous Showing 11-20 of 33 results. Next