A049513
Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 13, 1, 1, 5, 13, 25, 33, 1, 1, 6, 17, 37, 65, 81, 1, 1, 7, 21, 49, 97, 161, 193, 1, 1, 8, 25, 61, 129, 241, 385, 449, 1, 1, 9, 29, 73, 161, 321, 577, 897, 1025, 1, 1, 10, 33, 85, 193, 401, 769, 1345, 2049, 2305, 1, 1, 11, 37, 97, 225, 481
Offset: 0
Antidiagonals: 1; 1,1; 1,2,1; 1,3,5,1; 1,4,9,13,1; ...
A196273
Primes of the form n*2^(n-1)+1.
Original entry on oeis.org
2, 5, 13, 193, 449, 114689, 1811939329, 2434970217729660813313, 4943727411754159833089, 6731298963614255244763987969, 2388456554926020709124028311441244161
Offset: 1
-
Select[Table[n*2^(n-1)+1,{n,150}],PrimeQ] (* Harvey P. Dale, Jul 17 2018 *)
-
lista(nn) = {for (n=1, nn, if (isprime(p = n*2^(n-1)+1), print1(p, ", ")););} \\ Michel Marcus, Nov 09 2013
A344084
Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1
The sets are the columns below:
1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
2 3 3 2 4 4 4 2 3 3 2 5 5 5 5 2 3 4 3 4 4 2
3 4 4 4 3 5 5 5 5 5 5 3
4 5
As a tetrangle, the first four triangles are:
{1}
{2},{1,2}
{3},{1,3},{2,3},{1,2,3}
{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
Positions of first appearances are
A005183.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A296774,
A299755,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344085,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A036043,
A049085,
A115623,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
A386254
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.
Original entry on oeis.org
1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0
a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 17 2025
-
terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}
A386255
Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.
Original entry on oeis.org
1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0
a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
end:
a:= n-> n!*b(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Jul 17 2025
-
terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
-
E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}
A134399
Matrix product of Binomial triangle A007318 and triangle with (1, 1, 2, 3, 4, 5, ...) in the main diagonal and the rest zeros.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 4, 1, 5, 20, 30, 20, 5, 1, 6, 30, 60, 60, 30, 6, 1, 7, 42, 105, 140, 105, 42, 7, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 2, 2;
1, 3, 6, 3;
1, 4, 12, 12, 4;
1, 5, 20, 30, 20, 5;
1, 6, 30, 60, 60, 30, 6;
1, 7, 42, 105, 140, 105, 42, 7;
...
-
Table[Max[k, 1]*Binomial[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, May 03 2024 *)
A145033
T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 14, 10, 1, 1, 9, 25, 30, 15, 1, 1, 11, 39, 65, 55, 21, 1, 1, 13, 56, 119, 140, 91, 28, 1, 1, 15, 76, 196, 294, 266, 140, 36, 1, 1, 17, 99, 300, 546, 630, 462, 204, 45, 1, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55, 1
Offset: 0
T(3,2) = 6 because there are exactly 6 amenable quasi-idempotent order-decreasing partial one-one transformations (on a 3- chain) of height 2, namely: (1,2)->(1,2), (1,3)->(1,2), (1,3)->(1,3), (2,3)->(1,3), (2,3)->(2,1), (2,3)->(2,3).
1;
1, 1;
1, 3, 1;
1, 5, 6, 1;
1, 7, 14, 10, 1;
1, 9, 25, 30, 15, 1;
1, 11, 39, 65, 55, 21, 1;
1, 13, 56, 119, 140, 91, 28, 1;
1, 15, 76, 196, 294, 266, 140, 36, 1;
1, 17, 99, 300, 546, 630, 462, 204, 45, 1;
1, 19, 125, 435, 930,1302,1218, 750, 285, 55, 1;
-
T(n,k) = binomial(n,k)*((n-k)*(k+1)+1)/(n-k+1);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 23 2018
A343291
a(n) = (n-2)*2^(n-1) + n + 2.
Original entry on oeis.org
1, 2, 4, 9, 22, 55, 136, 329, 778, 1803, 4108, 9229, 20494, 45071, 98320, 213009, 458770, 983059, 2097172, 4456469, 9437206, 19922967, 41943064, 88080409, 184549402, 385875995, 805306396, 1677721629, 3489660958, 7247757343, 15032385568, 31138512929, 64424509474
Offset: 0
Partial differences give
A005183 (shifted).
A179257
Number of permutations of length n which avoid the patterns 321 and 1324.
Original entry on oeis.org
1, 1, 2, 5, 13, 32, 72, 148, 281, 499, 838, 1343, 2069, 3082, 4460, 6294, 8689, 11765, 15658, 20521, 26525, 33860, 42736, 53384, 66057, 81031, 98606, 119107, 142885, 170318, 201812, 237802, 278753, 325161, 377554, 436493, 502573, 576424, 658712, 750140, 851449
Offset: 0
There are 13 permutations of length 4 which avoid these two patterns, so a(4)=13.
- M. D. Atkinson, Restricted permutations, Discrete Math., 195 (1999), 27-38.
- Christian Bean, Bjarki Gudmundsson, Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- J. West, Generating trees and forbidden subsequences, Discrete Math., 157 (1996), 363-374.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
-
LinearRecurrence[{6,-15,20,-15,6,-1},{1,1,2,5,13,32},50] (* Harvey P. Dale, May 19 2024 *)
Comments