cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A049513 Array T by antidiagonals: T(k,n) = k*n*2^(n-1) + 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 9, 13, 1, 1, 5, 13, 25, 33, 1, 1, 6, 17, 37, 65, 81, 1, 1, 7, 21, 49, 97, 161, 193, 1, 1, 8, 25, 61, 129, 241, 385, 449, 1, 1, 9, 29, 73, 161, 321, 577, 897, 1025, 1, 1, 10, 33, 85, 193, 401, 769, 1345, 2049, 2305, 1, 1, 11, 37, 97, 225, 481
Offset: 0

Views

Author

Michael Somos, Sep 25 1999

Keywords

Examples

			Antidiagonals: 1; 1,1; 1,2,1; 1,3,5,1; 1,4,9,13,1; ...
		

Crossrefs

Essentially the same as A049069.

Programs

  • PARI
    {T(k, n) = k * n * 2^(n-1) + 1}

Formula

A005183(n) = T(1, n), A002064(n) = T(2, n), A048474(n) = T(3, n), A000337(n) = T(4, n), A016813(n) = T(n, 2), A017533(n) = T(n, 3).

A196273 Primes of the form n*2^(n-1)+1.

Original entry on oeis.org

2, 5, 13, 193, 449, 114689, 1811939329, 2434970217729660813313, 4943727411754159833089, 6731298963614255244763987969, 2388456554926020709124028311441244161
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 29 2011

Keywords

Comments

Generated by n = 1, 2, 3, 6, 7, 14, 27, 66, 67, 87, 115, .. = A029544(n)+1.
See also A236752 for primes of the form k*2^(k-1) - 1, and A230769 for the corresponding indices k (minus 1). - M. F. Hasler, Mar 01 2014

Crossrefs

Cf. A005183.

Programs

  • Mathematica
    Select[Table[n*2^(n-1)+1,{n,150}],PrimeQ] (* Harvey P. Dale, Jul 17 2018 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(p = n*2^(n-1)+1), print1(p, ", ")););} \\ Michel Marcus, Nov 09 2013

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A386254 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times.

Original entry on oeis.org

1, 1, 2, 6, 18, 60, 240, 1085, 5012, 23730, 121440, 685707, 4144668, 25614589, 159141892, 1012740885, 6805631232, 48872707006, 369227821608, 2853779791619, 22131042288980, 172055270717463, 1362017827326860, 11208504802237327, 96939147303239304, 875473007351905045
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 6 counts: (1,1,1), (1,2,2), (2,1,2), (2,2,1), (2,2,2), (3,3,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/j!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=26; CoefficientList[Series[Product[1+Sum[x^j/j!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    D_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/i!))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / j!).

A386255 Number of words of length n over an infinite alphabet such that for any letter k appearing within a word the letter k appears at least k times and exactly one of each kind of letter is marked.

Original entry on oeis.org

1, 1, 4, 15, 64, 325, 1776, 11179, 72640, 489969, 3435580, 26495491, 221599104, 1893705697, 16145571820, 138299146665, 1241234863936, 12033569772769, 124055067568788, 1303750295285563, 13577876900409280, 139418829477000801, 1441311794301705964, 15537427948684769425
Offset: 0

Views

Author

John Tyler Rascoe, Jul 16 2025

Keywords

Examples

			a(3) = 15 counts: (1#,1,1), (1,1#,1), (1,1,1#), (1#,2#,2), (1#,2,2#), (2#,1#,2), (2,1#,2#), (2#,2,1#), (2,2#,1#), (2#,2,2), (2,2#,2), (2,2,2#), (3#,3,3), (3,3#,3), (3,3,3#) where # denotes a mark.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+add(b(n-j, min(n-j, i-1))/(j-1)!, j=i..n)))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 17 2025
  • Mathematica
    terms=24; CoefficientList[Series[Product[1+Sum[x^j/(j-1)!, {j,k,terms}],{k,terms}],{x,0,terms-1}],x]Range[0,terms-1]! (* Stefano Spezia, Jul 17 2025 *)
  • PARI
    E_x(N) = {my(x='x+O('x^(N+1))); Vec(serlaplace(prod(k=1,N, 1 + sum(i=k,N, x^i/((i-1)!)))))}

Formula

E.g.f.: Product_{k>=1} (1 + Sum_{j>=k} x^j / (j-1)!).

A134399 Matrix product of Binomial triangle A007318 and triangle with (1, 1, 2, 3, 4, 5, ...) in the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 4, 1, 5, 20, 30, 20, 5, 1, 6, 30, 60, 60, 30, 6, 1, 7, 42, 105, 140, 105, 42, 7, 1, 8, 56, 168, 280, 280, 168, 56, 8, 1, 9, 72, 252, 504, 630, 504, 252, 72, 9
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Row sums = A005183: (1, 2, 5, 13, 33, 81, 193, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   3;
  1, 4, 12,  12,   4;
  1, 5, 20,  30,  20,   5;
  1, 6, 30,  60,  60,  30,  6;
  1, 7, 42, 105, 140, 105, 42, 7;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Max[k, 1]*Binomial[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, May 03 2024 *)

Formula

T(n,0) = 1; T(n,k) = k*binomial(n,k) for 1 <= k <= n. [corrected by Paolo Xausa, May 03 2024]

Extensions

Corrected and edited by Olivier Gérard, Aug 01 2013

A145033 T(n,k) is the number of amenable quasi-idempotent order-decreasing partial one-one transformations (of an n-chain) of height k (height(alpha) = |Im(alpha)|).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 7, 14, 10, 1, 1, 9, 25, 30, 15, 1, 1, 11, 39, 65, 55, 21, 1, 1, 13, 56, 119, 140, 91, 28, 1, 1, 15, 76, 196, 294, 266, 140, 36, 1, 1, 17, 99, 300, 546, 630, 462, 204, 45, 1, 1, 19, 125, 435, 930, 1302, 1218, 750, 285, 55, 1
Offset: 0

Views

Author

Abdullahi Umar, Sep 30 2008

Keywords

Comments

T(n,k) is also the rank of the semigroup of order-decreasing partial one-one transformations (of an n-chain) of height <= k.
The matrix inverse starts:
1;
-1,1;
2,-3,1;
-8,13,-6,1;
58,-95,46,-10,1;
-672,1101,-535,120,-15,1;
11374,-18635,9056,-2035,260,-21,1; - R. J. Mathar, Mar 29 2013

Examples

			T(3,2) = 6 because there are exactly 6 amenable quasi-idempotent order-decreasing partial one-one transformations (on a 3- chain) of height 2, namely: (1,2)->(1,2), (1,3)->(1,2), (1,3)->(1,3), (2,3)->(1,3), (2,3)->(2,1), (2,3)->(2,3).
   1;
   1,   1;
   1,   3,   1;
   1,   5,   6,   1;
   1,   7,  14,  10,   1;
   1,   9,  25,  30,  15,   1;
   1,  11,  39,  65,  55,  21,   1;
   1,  13,  56, 119, 140,  91,  28,   1;
   1,  15,  76, 196, 294, 266, 140,  36,   1;
   1,  17,  99, 300, 546, 630, 462, 204,  45,   1;
   1,  19, 125, 435, 930,1302,1218, 750, 285,  55,   1;
		

Crossrefs

Row sums of T(n, k) is A005183.

Programs

  • PARI
    T(n,k) = binomial(n,k)*((n-k)*(k+1)+1)/(n-k+1);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 23 2018

Formula

T(n,k) = C(n,k)*((n-k)*(k+1)+1)/(n-k+1), (n>=k>=0).

Extensions

More terms from Jinyuan Wang, Feb 26 2020

A343291 a(n) = (n-2)*2^(n-1) + n + 2.

Original entry on oeis.org

1, 2, 4, 9, 22, 55, 136, 329, 778, 1803, 4108, 9229, 20494, 45071, 98320, 213009, 458770, 983059, 2097172, 4456469, 9437206, 19922967, 41943064, 88080409, 184549402, 385875995, 805306396, 1677721629, 3489660958, 7247757343, 15032385568, 31138512929, 64424509474
Offset: 0

Views

Author

Alois P. Heinz, Apr 10 2021

Keywords

Comments

a(n) is the cardinality of set s(n), where s(0) = {0} and s(n+1) = s(n) union {(i+j+1)/2 : i,j in s(n)}. s(4) = {0, 1/2, 3/4, 7/8, 15/16, 1, 17/16, 9/8, 19/16, 5/4, 21/16, 11/8, 23/16, 3/2, 25/16, 13/8, 27/16, 7/4, 29/16, 15/8, 31/16, 2} has cardinality a(4) = 22.
Total number of 0-bits in all numbers <= 2^n and for n >= 1 the total number of bits in all numbers <= 2^(n-1); similar to A048495. - Ruud H.G. van Tol, Apr 28 2025

Crossrefs

Partial differences give A005183 (shifted).

Programs

  • Maple
    a:= n-> (n-2)*2^(n-1)+n+2:
    seq(a(n), n=0..35);

Formula

G.f.: -(x^3-5*x^2+4*x-1)/((2*x-1)^2*(x-1)^2).

A179257 Number of permutations of length n which avoid the patterns 321 and 1324.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 72, 148, 281, 499, 838, 1343, 2069, 3082, 4460, 6294, 8689, 11765, 15658, 20521, 26525, 33860, 42736, 53384, 66057, 81031, 98606, 119107, 142885, 170318, 201812, 237802, 278753, 325161, 377554, 436493, 502573, 576424, 658712, 750140, 851449
Offset: 0

Views

Author

Vincent Vatter, Jul 05 2010

Keywords

Examples

			There are 13 permutations of length 4 which avoid these two patterns, so a(4)=13.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,1,2,5,13,32},50] (* Harvey P. Dale, May 19 2024 *)

Formula

a(n) = 1+binomial(n,2)+binomial(n+2,5).
G.f.: 1-x*(x^5-4*x^4+7*x^3-8*x^2+4*x-1)/(x-1)^6. - Colin Barker, Aug 02 2012
a(n) = 1+A027658(n-2). - R. J. Mathar, Aug 19 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 05 2018
Previous Showing 21-29 of 29 results.