cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A208213 a(n)=(a(n-1)^3*a(n-2)^2+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 9, 2917, 1005227383127, 960336157066554685167071011848947459782832
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=2, b=3, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^3*a(n-2)^2+1)/a(n-3): end: seq(a(i),i=0..10);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(a[n-1]^3 a[n-2]^2+1)/a[n-3]},a,{n,10}] (* Harvey P. Dale, Jan 24 2014 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -0.834243184313921717115626125802356204078143759301838339196857934562...
d2 = 0.3433795689528896338577674315423659679880371604828202900379886914176...
d3 = 3.4908636153610320832578586942599902360901065988190180491588692431448...
are the roots of the equation d^3 + 1 = 3*d^2 + 2*d and
c1 = 0.8780803541847027315058502579763355822688533316057717751329965683549...
c2 = 0.4420233041946828357635108827822581168188691631054586381824944218534...
c3 = 1.0154140443448836210836588567949793209798883476847171784955774310427...
(End)

A321119 a(n) = ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2); n-th row common denominator of A321118.

Original entry on oeis.org

4, 2, 8, 10, 28, 38, 104, 142, 388, 530, 1448, 1978, 5404, 7382, 20168, 27550, 75268, 102818, 280904, 383722, 1048348, 1432070, 3912488, 5344558, 14601604, 19946162, 54493928, 74440090, 203374108, 277814198, 759002504, 1036816702, 2832635908, 3869452610
Offset: 0

Views

Author

Keywords

Examples

			a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
		

References

  • Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.

Crossrefs

Cf. A002176 (common denominators of Cotesian numbers).

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
  • Maxima
    a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
    makelist(ratsimp(a(n)), n, 0, 50);

Formula

a(n) = (((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)*((2 - sqrt(2))*(-1)^n + 2 + sqrt(2))/2.
a(-n) = (-1)^n*a(n).
a(n) = 2*A000034(n+1)*A002531(n).
a(2*n) = 2*A001834(n).
a(2*n+1) = 2*A003500(n).
a(n) = 4*a(n-2) - a(n-4) with a(0) = 4, a(1) = 2, a(2) = 8, a(3) = 10.
a(2*n+3) = a(2*n+1) + a(2*n+2).
a(2*n+2) = a(2*n) + 2*a(2*n+1).
G.f.: 2*(1 - x)*(2 + 3*x - x^2)/(1 - 4*x^2 + x^4).
E.g.f.: (1 + exp(-sqrt(6)*x))*((2 - sqrt(2))*exp(sqrt(2 - sqrt(3))*x) + (2 + sqrt(2))*exp(sqrt(2 + sqrt(3))*x))/2.
Lim_{n->infinity} a(2*n+1)/a(2*n) = (1 + sqrt(3))/2.

A072713 a(1)=a(2)=a(3)=a(4)=a(5)=1; for n>5, a(n)*a(n-5) = a(n-1)*a(n-2)*a(n-3)*a(n-4)+1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 7, 43, 1807, 815861, 147917502976, 1339566593057489572791, 6793440021984612817314824762112917427331, 607759339422199886496126580428414916308278553796099069562650354036190535151
Offset: 1

Views

Author

Benoit Cloitre, Aug 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{a_,b_,c_,d_,e_}]:={b,c,d,e,(b*c*d*e+1)/a}; Join[{1,1,1,1}, Transpose[ NestList[nxt,{1,1,1,1,1},15]][[5]]] (* Harvey P. Dale, Oct 03 2012 *)

A208206 a(n)=(a(n-1)^2*a(n-2)+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 5, 51, 6503, 431347892, 23724602128927104843, 37334625705205335653803036700733450756576803
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=1, b=2, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).
The next term (a(10)) has 98 digits. - Harvey P. Dale, Oct 04 2014

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^2*a(n-2)+1)/a(n-3): end: seq(a(i),i=0..10);
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==1,a[n]==(a[n-1]^2 a[n-2]+1)/a[n-3]},a,{n,10}] (* Harvey P. Dale, Oct 04 2014 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -0.80193773580483825247220463901489010233183832426371430010712484639886484...
d2 = 0.554958132087371191422194871006410481067288862470910089376025968205157535...
d3 = 2.246979603717467061050009768008479621264549461792804210731098878193707304...
are the roots of the equation d^3 + 1 = 2*d^2 + d and
c1 = 0.874335057499939749225491691816700793966151250175012051621456437468590379...
c2 = 0.402356411273897640287204171338236092104516307383060911032953286637247174...
c3 = 1.071117422488325114038954501945557033632156032599675833309484054582086570...
(End)

A208208 a(n)=(a(n-1)^4*a(n-2)+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 17, 167043, 6618080569762280805809
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=1, b=4, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^4*a(n-2)+1)/a(n-3): end: seq(a(i),i=0..10);
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^4*a[n - 2] + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 7}] (* Michael De Vlieger, Mar 19 2017 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -0.588363990685104156421284586508527584304318862407786509166141051262...
d2 = 0.4064206546327112651910488344937800073049991477253475806754539682375...
d3 = 4.1819433360523928912302357520147475769993197146824389284906870830246...
are the roots of the equation d^3 + 1 = 4*d^2 + d and
c1 = 0.8094826741348488413005600397911253102639462301397489110738060562305...
c2 = 0.5758908197062035276668941188013698534573120455706764136847247903030...
c3 = 1.0094396347013780675988108222508397688561313671701492219003321772184...
(End)

A208214 a(n)=(a(n-1)^3*a(n-2)^3+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 9, 5833, 72339160083737, 8347449602301100278574002746114271427525770715131218
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=3, b=3, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^3*a(n-2)^3+1)/a(n-3): end: seq(a(i),i=0..10);
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1]^3*a[n - 2]^3 + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 7}] (* Michael De Vlieger, Mar 19 2017 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -1
d2 = 2-sqrt(3) = 0.2679491924311227064725536584941276330571947461896193719...
d3 = 2+sqrt(3) = 3.7320508075688772935274463415058723669428052538103806280...
are the roots of the equation d^3 + 1 = 3*d^2 + 3*d and
c1 = 0.9085343342123995498629194372995408229585378171837724081842452659181...
c2 = 0.3811823487030541690662698257664022175009714305688428757048879374472...
c3 = 1.0119167333492916399265234093841995850496968884402785055210058839859...
(End)

A076737 Let u(1)=u(2)=u(3)=2, u(n)=(1+u(n-1)u(n-2))/u(n-3); then a(n) is the numerator of u(n).

Original entry on oeis.org

2, 2, 2, 5, 3, 17, 11, 65, 43, 257, 171, 1025, 683, 4097, 2731, 16385, 10923, 65537, 43691, 262145, 174763, 1048577, 699051, 4194305, 2796203, 16777217, 11184811, 67108865, 44739243, 268435457, 178956971, 1073741825, 715827883, 4294967297
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2002

Keywords

Crossrefs

Cf. A005246, A076736 (denominator of u(n)).

Programs

  • Maple
    2,2,2,seq(2/3+(1/6)*2^k+(1/12)*(-1)^k*2^k+(1/3)*(-1)^k,k=4..50); # Robert Israel, Aug 10 2015
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -8):
    a := n -> `if`(n < 5, [2, 2, 2, 5][n], H(n-2, irem(n, 2), 1/2)):
    seq(simplify(a(n)), n=1..34); # Peter Luschny, Sep 03 2019
  • Mathematica
    nxt[{a_,b_,c_}]:={b,c,(1+b c)/a}; NestList[nxt,{2,2,2},40][[All,1]]// Numerator (* Harvey P. Dale, Oct 31 2021 *)

Formula

For n>4, a(n) = 2^A028242(n-4)*u(n); u(2n) = 2^(n-1)+1/2^n hence a(2n) = 4^(n-1)+1.
From Michael Somos (via Benoit Cloitre), Nov 29 2002: (Start)
a(1)=a(2)=a(3)=2, a(n+2) = (1+2^n)/(1+2*(n mod 2)).
For k>=2, a(2k+1) = A001045(2k-1). (End)
Empirical g.f.: x*(4*x^6+x^4-5*x^3-8*x^2+2*x+2) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)). - Colin Barker, Oct 14 2014
This follows from the Somos formula for a(n+2). - Robert Israel, Aug 10 2015
a(1)=a(2)=a(3)=2 and, for n>3, a(n) = denominator(1/2+6/(4+2^n)). - Gerry Martens, Aug 10 2015
a(n) = H(n - 2, n mod 2, 1/2) for n >= 5 where H(n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -8). - Peter Luschny, Sep 03 2019

A208205 a(n)=(a(n-1)*a(n-2)^5+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 3, 97, 11786, 33736797423001, 79097781524295318019203322936641
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=5, b=1, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10)
The next term (a(9)) has 96 digits. - Harvey P. Dale, Sep 13 2022

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)*a(n-2)^5+1)/a(n-3): end: seq(a(i),i=1..10);
  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] a[n - 2]^5 + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 8}] (* Michael De Vlieger, Mar 19 2017 *)
    nxt[{a_,b_,c_}]:={b,c,(c*b^5+1)/a}; NestList[nxt,{1,1,1},10][[All,1]] (* Harvey P. Dale, Sep 13 2022 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -1.903211925911553287485216224057094233775314050044332659604216582082...
d2 = 0.1939365664746304482560845569332033002552873106788960042162607290276...
d3 = 2.7092753594369228392291316671238909335200267393654366553879558530545...
are the roots of the equation d^3 + 1 = d^2 + 5*d and
c1 = 0.9741074409555962981370572554321352591111177638556227590517984272608...
c2 = 0.0499759123576461468686480770163694779918691526759585723897652462761...
c3 = 1.0272217210627198315132544386598971884129462517962425299212701250318...
(End)

A208212 a(n) = (a(n-1)^2*a(n-2)^5+1)/a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 5, 801, 1002501563, 66276977238296815913344374183794
Offset: 0

Views

Author

Matthew C. Russell, Apr 23 2012

Keywords

Comments

This is the case a=5, b=2, y(0)=y(1)=y(2)=1 of the recurrence shown in the Example 3.2 of "The Laurent phenomenon" (see Link lines, p. 10).

Crossrefs

Programs

  • Maple
    a:=proc(n) if n<3 then return 1: fi: return (a(n-1)^2*a(n-2)^5+1)/a(n-3): end: seq(a(i),i=0..10);
  • Mathematica
    a[n_] := a[n] = If[n <= 2, 1, (a[n - 1]^2*a[n - 2]^5 + 1)/a[n - 3]];
    Table[a[n], {n, 0, 7}] (* Jean-François Alcover, Nov 25 2017 *)

Formula

From Vaclav Kotesovec, May 20 2015: (Start)
a(n) ~ c1^(d1^n) * c2^(d2^n) * c3^(d3^n), where
d1 = -1.575773472651936072015953246349296378313356749177416595434978648425...
d2 = 0.1872837251102239188569922313039458439968721185362219238420888422761...
d3 = 3.3884897475417121531589610150453505343164846306411946715928898061494...
are the roots of the equation d^3 + 1 = 2*d^2 + 5*d and
c1 = 0.9607631794694254165284953988161129828633931861764073755339129251426...
c2 = 0.1625672201779811599302887070429221376610589038410298300467412998556...
c3 = 1.0141969317515019907302101637404918873873074910913934972790303073225...
(End)

A217787 a(n) = (a(n-1)*a(n-3) + 1) / a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 14, 19, 43, 67, 91, 206, 321, 436, 987, 1538, 2089, 4729, 7369, 10009, 22658, 35307, 47956, 108561, 169166, 229771, 520147, 810523, 1100899, 2492174, 3883449, 5274724, 11940723, 18606722, 25272721, 57211441, 89150161, 121088881
Offset: 0

Views

Author

Michael Somos, Mar 25 2013

Keywords

Comments

This sequence is similar to A005246 whose recursion is a(n) = (a(n-1)*a(n-2) + 1) / a(n-3). - Michael Somos, Feb 10 2017

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 9*x^7 + 14*x^8 + 19*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n le 3 select 1 else (Self(n)*Self(n-2)+1)/Self(n-3): n in [0..40]]; // Bruno Berselli, Mar 25 2013
  • Mathematica
    a[ n_] := With[{m = If [n < 0, 3 - n, n]}, SeriesCoefficient[ (1 + x + x^2 - 4 x^3 - 3 x^4 - 2 x^5) / (1 - 5 x^3 + x^6), {x, 0, m}]]; (* Michael Somos, Jan 18 2015 *)
    LinearRecurrence[{0,0,5,0,0,-1},{1,1,1,1,2,3},40] (* Harvey P. Dale, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, n = 3-n); polcoeff( (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6) + x * O(x^n), n)};
    

Formula

G.f.: (1 + x + x^2 - 4*x^3 - 3*x^4 - 2*x^5) / (1 - 5*x^3 + x^6).
a(n) = a(3-n) for all n in Z.
a(n+3) + a(n-3) = 5*a(n) for all n in Z.
a(n+1) + a(n-1) = a(n) * (2 + [n mod 3 == 0]) for all n in Z.
a(n+3k)+a(n-3k) = A003501(k)*a(n) for n>=3k. - Bruno Berselli, Mar 25 2013
Previous Showing 21-30 of 31 results. Next