cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 137 results. Next

A357960 a(n) = A005259(n-1)^5 * A005258(n)^6.

Original entry on oeis.org

729, 147018378125, 20917910914764786689697, 24148107115850058575342740485778125, 79477722547796770983047586179643766765851375729, 492664048531500749211923278756418311980637289373757041378125, 4671227340507161302417161873394448514470099313382652883508175438056640625
Offset: 1

Views

Author

Peter Bala, Oct 25 2022

Keywords

Comments

Conjectures:
1) a(p) == a(1) (mod p^5) for all primes p >= 3 (checked up to p = 271).
2) a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and for all primes p >= 3. These are stronger supercongruences than those satisfied separately by the two types of Apéry numbers A005258 and A005259.

Crossrefs

Programs

  • Maple
    seq( add(binomial(n-1,k)^2*binomial(n+k-1,k)^2, k = 0..n-1)^5 * add(binomial(n, k)^2*binomial(n+k,k), k = 0..n)^6, n = 1..20);

Formula

a(n) = ( Sum_{k = 0..n-1} binomial(n-1,k)^2*binomial(n+k-1,k)^2 )^5 * ( Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k) )^6.
a(n*p^r) == a(n*p^(r-1)) ( mod p^(3*r) ) for positive integers n and r and for all primes p >= 5.

A267220 Expansion of exp( Sum_{n >= 1} A005259(n)*x^n/n ).

Original entry on oeis.org

1, 5, 49, 685, 11807, 232771, 5031415, 116222699, 2822056474, 71230971002, 1854334597966, 49503739725470, 1349449053997654, 37438177610268014, 1054371288632733022, 30081609844254013942, 867990837575171240525, 25295504900322451251793
Offset: 0

Views

Author

Peter Bala, Jan 12 2016

Keywords

Comments

The expansion of exp( Sum_{n >= 1} A005259(n-1)*x^n/n ) may also have only integer coefficients. See the Example section.
This is proved in Beukers, p. 143. - Peter Bala, Mar 06 2020

Examples

			exp( Sum_{n >= 1} A005259(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + .... The coefficient list begins [1, 3, 27, 390, 7038, 144550, 3232294, 76768575, 1907248655, 49067872253, 1298071849821, 35131589549434, 969031280176162, 27161049933788970, 771837331889465586, 22196147941000214583, 644991902540171273463, ...].
The Apéry number sequence A005259 begins [1, 5, 73, 1445, 33001, 819005, ...]. Let F(x) = x/( series reversion of x*A(x) ) = 1 + 5*x + 24*x^2 + 200*x^3 + 2430*x^4 + ....
Truncation of F(x)^n:
  F(x)^0: 1
  F(x)^1: 1 + 5*x
  F(x)^2: 1 + 10*x + 73*x^2
  F(x)^3: 1 + 15*x + 147*x^2 + 1445*x^3
  F(x)^4: 1 + 20*x + 246*x^2 + 2740*x^3 + 33001*x^4
The coefficient array
      1
      5    1
     73   10   1
   1445  147  15  1
  33001 2740 246 20 1
  ...
has the Apéry numbers as the first column.
It is a Riordan array belonging to the hitting-time subgroup of the Riordan group - see Peart and Woan.
		

Crossrefs

Programs

  • Maple
    #A267220
    #define the Apéry numbers
    A005259 := proc (n) option remember; if n = 0 then 1 elif n = 1 then 5 else ((34*(n-1)^3+51*(n-1)^2+27*n-22)*A005259(n-1)-(n-1)^3*A005259(n-2))/n^3 end if; end proc:
    exp(add(A005259(n)*x^n/n, n = 1 .. 17)):
    seq(coeftayl(%, x = 0, n), n = 0 .. 17);

Formula

n*a(n) = Sum_{k = 0..n-1} A005259(n-k)*a(k).
O.g.f.: A(x) = exp( Sum_{n >= 1} A005259(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + 5031415*x^6 + ....
The o.g.f. A(x) satisfies 1 + x*d/dx(log(A(x))) = Sum_{n >= 0} A005259(n)*x^n.
Let F(x) = x/( series reversion of x*A(x) ) = 1 + 5*x + 24*x^2 + 200*x^3 + 2430*x^4 + 36096*x^5 + 605620*x^6 + 11024496*x^7 + 212758245*x^8 + .... Then A005259(n) = [x^n]( F(x)^n ). See the example section.
From Peter Bala, Oct 17 2024: (Start)
For integer m, define a sequence {u_m(n) : n >= 0} by u_m(n) = [x^n] A(x)^(m*n). Conjecture: the supercongruences u_m(n*p^r) == u_m(n*p^(r-1)) (mod p^(2*r)) hold for all primes p >= 5 and positive integers n and r.
For integer m, define a sequence {v_m(n) : n >= 0} by v_m(n) = [x^n] F(x)^(m*n). Conjecture: the supercongruences v_m(n*p^r) == v_m(n*p^(r-1)) (mod p^(2*r)) hold for all primes p >= 5 and positive integers n and r. (End)

A379153 The binary weights of the Apéry numbers (A005259).

Original entry on oeis.org

1, 2, 3, 6, 6, 14, 15, 15, 20, 19, 23, 23, 27, 34, 35, 44, 40, 36, 40, 44, 41, 48, 52, 62, 64, 66, 57, 66, 72, 79, 71, 75, 77, 78, 79, 78, 88, 86, 92, 100, 103, 103, 92, 116, 96, 116, 117, 113, 129, 117, 123, 128, 123, 126, 130, 133, 129, 142, 147, 134, 135, 148
Offset: 0

Views

Author

Amiram Eldar, Dec 17 2024

Keywords

Crossrefs

Similar sequences: A011373, A079584, A082481, A379151, A379152.

Programs

  • Mathematica
    a[n_] := DigitCount[Sum[(Binomial[n, k] * Binomial[n+k, k])^2, {k, 0, n}], 2, 1]; Array[a, 100, 0]
  • PARI
    a(n) = hammingweight(sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2));

Formula

a(n) = A000120(A005259(n)).
a(n) > c * (log(n)/log(log(n)))^(1/4) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Luca and Shparlinski, 2010).
a(n) > c * log(n)/log(log(n)) holds on a set of n of asymptotic density 1, where c > 0 is a constant (Knopfmacher and Luca, 2012).
Conjecture: Limit_{m->oo} (1/m^2) * Sum_{k=1..m} a(k) = log(sqrt(2) + 1)/log(2) = 1.2715533... (Knopfmacher and Luca, 2012).

A276323 a(n) = (binomial(2 * prime(n + 3), prime(n + 3)) * A005259(prime(n + 3) - 1) - 2)/prime(n + 3)^5 for n >= 1.

Original entry on oeis.org

4382314, 59821998476834, 338197165389273486, 17314015796594772560245514, 145853326344012138627669357202, 12936469013977571458378002436843685186, 15931675838688077485749893663903436780403973163302
Offset: 1

Views

Author

Seiichi Manyama, Aug 30 2016

Keywords

Comments

Let p be a prime > 5. Binomial(2 * p, p) * A005259(p - 1) == 2 (mod p^5). So a(n) is an integer.

Examples

			a(1) = (binomial(14, 7) * A005259(6) - 2)/7^5 = (3432 * 21460825 - 2)/7^5 = 4382314.
		

Crossrefs

Programs

  • Mathematica
    Table[(Binomial[2 Prime[n + 3], Prime[n + 3]] Sum[(Binomial[#, k] Binomial[# + k, k])^2, {k, 0, #}] &[Prime[n + 3] - 1] - 2)/Prime[n + 3]^5, {n, 7}] (* Michael De Vlieger, Aug 30 2016 *)
  • Ruby
    require 'prime'
    def C(n, r)
      r = [r, n - r].min
      return 1 if r == 0
      return n if r == 1
      numerator = (n - r + 1..n).to_a
      denominator = (1..r).to_a
      (2..r).each{|p|
        pivot = denominator[p - 1]
        if pivot > 1
          offset = (n - r) % p
          (p - 1).step(r - 1, p){|k|
            numerator[k - offset] /= pivot
            denominator[k] /= pivot
          }
        end
      }
      result = 1
      (0..r - 1).each{|k|
        result *= numerator[k] if numerator[k] > 1
      }
      return result
    end
    def A005259(n)
      i = 0
      a, b = 1, 5
      ary = [1]
      while i < n
        i += 1
        a, b = b, ((((34 * i + 51) * i + 27) * i + 5) * b - i ** 3 * a) / (i + 1) ** 3
        ary << a
      end
      ary
    end
    def A276323(n)
      p_ary = Prime.take(n + 3)[3..-1]
      a = A005259(p_ary[-1] - 1)
      ary = []
      p_ary.each{|i|
        j = C(2 * i, i) * a[i - 1] - 2
        break if j % i ** 5 > 0
        ary << j / i ** 5
      }
      ary
    end

A289277 a(n) = A005259(n) mod 2*n+1.

Original entry on oeis.org

0, 2, 3, 3, 7, 0, 9, 5, 16, 6, 1, 13, 4, 26, 24, 26, 22, 30, 23, 32, 7, 9, 43, 11, 37, 29, 23, 0, 49, 40, 1, 44, 20, 54, 19, 18, 8, 20, 22, 55, 4, 70, 80, 62, 2, 31, 37, 20, 7, 44, 51, 62, 64, 76, 77, 41, 75, 75, 115, 68, 0, 35, 42, 11, 88, 59, 101, 35, 119, 11
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Sum[(Binomial[n, k] Binomial[n + k, k])^2, {k, 0, n}], 2n + 1], {n, 0, 100}] (* Indranil Ghosh, Jul 01 2017 *)
  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2) % (2*n+1); \\ Michel Marcus, Jul 01 2017

Formula

If m = 2*n + 1 is a prime, a(n) = A030211(n) mod m.

A289278 a(n) = A005259(n) mod (2*n+1)^2.

Original entry on oeis.org

0, 5, 23, 24, 34, 77, 22, 140, 50, 44, 169, 473, 354, 539, 198, 801, 385, 135, 1207, 617, 1483, 52, 2023, 528, 723, 2273, 2567, 1265, 1303, 2813, 550, 233, 1775, 188, 2365, 728, 154, 1520, 4180, 5585, 571, 236, 3650, 2672, 714, 4581, 4966, 2490, 8931, 4796, 1566
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Mod[Sum[(Binomial[n, k] Binomial[n + k, k])^2, {k, 0, n}], (2n + 1)^2], {n, 0, 100}] (* Indranil Ghosh, Jul 01 2017 *)
  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2) % (2*n+1)^2; \\ Michel Marcus, Jul 01 2017

Formula

If m = 2*n + 1 is a prime, a(n) = A030211(n) mod m^2.

A362723 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x)= exp( Sum_{k >= 1} A005259(k)*x^k/k ).

Original entry on oeis.org

1, 10, 200, 7390, 260800, 10263010, 407520920, 16758685030, 697767370240, 29525605934410, 1261570539980200, 54419751094210270, 2364396136291654720, 103393259758470870770, 4545671563318715532280, 200804420082143353690390, 8907295723280072012247040, 396570344897237949249382010
Offset: 0

Views

Author

Peter Bala, May 01 2023

Keywords

Comments

It is known that the sequence of Apéry numbers A005259 satisfies the Gauss congruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + ... has integer coefficients. See A267220. For a proof see, for example, Beukers, Proposition, p 143. Therefore, the power series expansion of E(x)/E(-x) also has integer coefficients and so a(n) = [x^n] ( E(x)/E(-x) )^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.

Crossrefs

Programs

  • Maple
    A005259 := proc(n) add(binomial(n, k)^2*binomial(n+k,k)^2, k = 0..n) end;
    E(n,x) := series(exp(n*add(2*A005259(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
    seq(coeftayl(E(n,x), x = 0, n), n = 0..20);

Formula

a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005259(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p) == a(1) (mod p^3) holds for all primes p >= 5 (checked up to p = 101).
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 5.
3) for n >= 1, r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 5.

A228143 Determinant of the (n+1) X (n+1) Hankel-type matrix with (i,j)-entry equal to A005259(i+j) for all i,j = 0,...,n.

Original entry on oeis.org

1, 48, 161856, 39002646528, 674708032182398976, 839431510934341028210638848, 75178263784150214825106859877233852416, 484905075185415831301477770434885768003422223597568, 225327830550164300895512117291590826401931052058453494726924435456, 7544971365077550026405694467600069733983243666195122776655161969325034606646263808
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 14 2013

Keywords

Comments

Conjecture: a(n)/24^n is always a positive integer. Similarly, if b(n) denotes the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to A005258(i+j) for all i,j = 0,...,n, then b(n)/10^n is always a positive integer; also, if p is a prime with floor(p/10) odd and p is not congruent to 31 or 39 modulo 40, then p divides b((p-1)/2).
Conjecture: if A(x) = 1 + 48*x + 161856*x^2 + ... denotes the o.g.f. then A(x/3)^(1/8) has integer coefficients (checked up to x^30). - Peter Bala, Apr 22 2018

Examples

			a(0) = 1 since A005259(0+0) = 1.
A(x/3)^(1/8) = 1 + 2*x + 2234*x^2 + 180536476*x^3 + 1041213553880806*x^4 + 431806318205326490858140*x^5 + 12890648790962619413782473229673892*x^6 + 27715196341006992690056202634389754569453086008*x^7 + 4292939920556011562306504817069205738464230629574745210785030*x^8 + 47915532217380103151430239883031701095737468980424637791531495548671526291244*x^9 + .... - _Peter Bala_, Apr 22 2018
		

Crossrefs

Programs

  • Mathematica
    A[n_]:=Sum[Binomial[n,k]^2*Binomial[n+k,k]^2,{k,0,n}]; a[n_]:=Det[Table[A[i+j],{i,0,n},{j,0,n}]]; Table[a[n],{n,0,10}]

A289289 a(n) = A005259(n) mod (n+1)^3.

Original entry on oeis.org

0, 5, 19, 37, 1, 149, 1, 165, 559, 5, 1, 1373, 1, 5, 2698, 2725, 1, 581, 1, 2445, 3160, 5, 1, 8285, 1751, 5, 15139, 9677, 1, 18005, 1, 31397, 16045, 5, 13450, 2669, 1, 5, 52801, 20365, 1, 20501, 1, 65333, 59425, 5, 1, 86621, 48707, 99005, 59029, 54173, 1, 99725
Offset: 0

Views

Author

Seiichi Manyama, Jul 01 2017

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2) % (n+1)^3; \\ Michel Marcus, Jul 02 2017

Formula

If m = n + 1 is a prime and m >= 5, a(n) = 1.

A322518 Binomial transform of the Apéry numbers (A005259).

Original entry on oeis.org

1, 6, 84, 1680, 39240, 999216, 26899896, 752939424, 21691531800, 638947312080, 19155738105504, 582589712312064, 17930566188602136, 557417298916695600, 17477836958370383280, 552090876791399769600, 17552554240486710112920, 561230779055361080132880
Offset: 0

Views

Author

Sarah Arpin, Dec 13 2018

Keywords

Comments

Starting with the a(3) term, each term is divisible by 8. (Empirical observation.)
The above is true and follows easily from the pair of known congruences for the Apéry numbers A(n): A(2*n) == 1 (mod 8) and A(2n+1) == 5 (mod 8). - Peter Bala, Jan 06 2020

Examples

			a(2) = binomial(2,0)*A(0) + binomial(2,1)*A(1) + binomial(2,2)*A(2), where A(k) denotes the k-th Apéry number. Using this definition:
a(2) = binomial(2,0)*(binomial(0,0)*binomial(0,0))^2 + binomial(2,1)*((binomial(1,0)*binomial(1,0))^2 + (binomial(1,1)*binomial(2,1))^2) + binomial(2,2)*((binomial(2,0)*binomial(2,0))^2 + (binomial(2,1)*binomial(3,1))^2 + (binomial(2,2)*binomial(4,2))^2) = 84.
		

Crossrefs

Programs

  • Julia
    function BinomialTransform(seq)
        N = length(seq)
        bt = Array{BigInt,1}(undef,N)
        bt[1] = seq[1]
        for k in 1:N-1
            next = BigInt(0)
            for j in 0:k next += binomial(k, j)*seq[j+1] end
            bt[k+1] = next
        end
    bt end
    BinomialTransform([A005259(n) for n in 0:18]) |> println # Peter Luschny, Jan 06 2020
  • Mathematica
    a[n_] := Sum[Binomial[n, k] * Sum[(Binomial[k, j] * Binomial[k+j, j])^2, {j, 0, k}], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
  • Sage
    def OEISbinomial_transform(N, seq):
        BT = [seq[0]]
        k = 1
        while k< N:
            next = 0
            j = 0
            while j <=k:
                next = next + ((binomial(k,j))*seq[j])
                j = j+1
            BT.append(next)
            k = k+1
        return BT
    Apery = oeis('A005259')
    OEISBinom = OEISbinomial_transform(18,Apery.first_terms(20))
    

Formula

a(n) ~ 2^(n - 3/4) * 3^(n + 3/2) * (1 + sqrt(2))^(2*n - 1) / (Pi*n)^(3/2). - Vaclav Kotesovec, Dec 17 2018
The Gauss congruences hold: a(n*p^k) == a(n*p^(k-1)) (mod p^k) for all primes p and n a positive integer. - Peter Bala, Jan 06 2020
Previous Showing 11-20 of 137 results. Next