cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005259 Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.

Original entry on oeis.org

1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485
Offset: 0

Views

Author

Keywords

Comments

Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021

Examples

			G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - _Michael B. Porter_, Jul 14 2016
		

References

  • Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
  • Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
  • Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
  • Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->Binomial(n,k)^2*Binomial(n+k,k)^2)); # Muniru A Asiru, Sep 28 2018
    
  • Haskell
    a005259 n = a005259_list !! n
    a005259_list = 1 : 5 : zipWith div (zipWith (-)
       (tail $ zipWith (*) a006221_list a005259_list)
       (zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
    -- Reinhard Zumkeller, Mar 13 2014
    
  • Magma
    [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in  [0..17]]; // Marius A. Burtea, Jan 20 2020
    
  • Maple
    a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
    # Alternative:
    a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
  • Mathematica
    Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1,1,1}, 1],{n,0,13}] (* Jean-François Alcover, Apr 01 2011 *)
    Table[Sum[(Binomial[n,k]Binomial[n+k,k])^2,{k,0,n}],{n,0,30}] (* Harvey P. Dale, Oct 15 2011 *)
    a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
  • PARI
    a(n)=sum(k=0,n,(binomial(n,k)*binomial(n+k,k))^2) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    def A005259(n):
        m, g = 1, 0
        for k in range(n+1):
            g += m
            m *= ((n+k+1)*(n-k))**2
            m //=(k+1)**4
        return g # Chai Wah Wu, Oct 02 2022

Formula

D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n,k)^2 * C(n,j)^2 * C(k+j,k), see Labelle et al. link. - Max Alekseyev, Mar 12 2025

A267219 Expansion of exp( Sum_{n >= 1} A002895(n)*x^n/n ).

Original entry on oeis.org

1, 4, 22, 152, 1241, 11444, 115390, 1243672, 14104480, 166460800, 2028202288, 25363355200, 324098616925, 4217387014948, 55737166570870, 746544123583928, 10116388473816503, 138496854665195996, 1913322982776458234, 26646647187379206440, 373800949052597088329
Offset: 0

Views

Author

Peter Bala, Jan 12 2016

Keywords

Crossrefs

Programs

  • Maple
    # define the Domb numbers
    A002895 := n -> add(binomial(n,k)^2*binomial(2*n-2*k,n-k)*binomial(2*k,k), k = 0..n):
    A267219 := proc (n) option remember; if n = 0 then 1 else 1/n*add( A002895(n-k)*A267219(k), k = 0..n-1) end if; end proc:
    seq(A267219(n), n = 0..20);
  • Mathematica
    m = 21;
    domb[n_] := Sum[Binomial[n, k]^2 Binomial[2n - 2k, n - k] Binomial[2k, k], {k, 0, n}];
    Exp[Sum[domb[n] x^n/n, {n, 1, m}]] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 04 2021 *)
  • PARI
    \\ here b(n) is A002895(n).
    b(n)={sum(k=0, n, binomial(n, k)^2 * binomial(2*n-2*k, n-k) * binomial(2*k, k) )}
    seq(n)={Vec(exp(sum(k=1, n, b(k)*x^k/k, O(x*x^n))))} \\ Andrew Howroyd, Dec 23 2019

Formula

n*a(n) = Sum_{k = 0..n-1} A002895(n-k)*a(k).
O.g.f. A(x) = exp( Sum_{n >= 1} A002895(n)*x^n/n ) = 1 + 4*x + 22*x^2 + 152*x^3 + 1241*x^4 + ....
The o.g.f. A(x) satisfies 1 + x*d/dx(log(A(x))) = Sum_{n >= 0} A002895(n)*x^n.
A(x)^(1/4) = 1 + x + 4*x*2 + 25*x^3 + 199*x^4 + 1837*x^5 + ... appears to have integer coefficients.
For integer m, define a sequence {u_m(n) : n >= 0} by u_m(n) = [x^n] A(x)^(m*n/4). Conjecture: the supercongruences u_m(n*p^r) == u_m(n*p^(r-1)) (mod p^(2*r)) hold for all primes p >= 5 and positive integers n and r. - Peter Bala, Oct 17 2024
a(n) ~ c * 16^n / n^(5/2), where c = 0.51464454254223965069014111993955211551145811088623409257449917225276305467... - Vaclav Kotesovec, Oct 31 2024

Extensions

Terms a(17) and beyond from Andrew Howroyd, Dec 23 2019

A362723 a(n) = [x^n] ( E(x)/E(-x) )^n where E(x)= exp( Sum_{k >= 1} A005259(k)*x^k/k ).

Original entry on oeis.org

1, 10, 200, 7390, 260800, 10263010, 407520920, 16758685030, 697767370240, 29525605934410, 1261570539980200, 54419751094210270, 2364396136291654720, 103393259758470870770, 4545671563318715532280, 200804420082143353690390, 8907295723280072012247040, 396570344897237949249382010
Offset: 0

Views

Author

Peter Bala, May 01 2023

Keywords

Comments

It is known that the sequence of Apéry numbers A005259 satisfies the Gauss congruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + ... has integer coefficients. See A267220. For a proof see, for example, Beukers, Proposition, p 143. Therefore, the power series expansion of E(x)/E(-x) also has integer coefficients and so a(n) = [x^n] ( E(x)/E(-x) )^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.

Crossrefs

Programs

  • Maple
    A005259 := proc(n) add(binomial(n, k)^2*binomial(n+k,k)^2, k = 0..n) end;
    E(n,x) := series(exp(n*add(2*A005259(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
    seq(coeftayl(E(n,x), x = 0, n), n = 0..20);

Formula

a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005259(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p) == a(1) (mod p^3) holds for all primes p >= 5 (checked up to p = 101).
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 5.
3) for n >= 1, r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 5.
Showing 1-3 of 3 results.