A110313
Expansion of e.g.f. exp(x)/(1-x-x^2).
Original entry on oeis.org
1, 2, 7, 34, 221, 1786, 17347, 196442, 2542969, 37030546, 599172671, 10664259442, 207061905877, 4355429249354, 98661276360571, 2394559287772906, 61991654930903537, 1705178260099590562, 49662655090649112439, 1526761411676393108546, 49407037167974524897741
Offset: 0
-
[(&+[Binomial(n,k)*Factorial(k)*Fibonacci(k+1): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 30 2021
-
Table[Sum[Binomial[n, k]k!Fibonacci[k+1], {k,0,n}], {n,0,30}] (* Emanuele Munarini, May 27 2011 *)
With[{nn=20},CoefficientList[Series[Exp[x]/(1-x-x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 09 2023 *)
-
makelist(sum(binomial(n,k)*k!*fib(k+1), k,0,n), n,0,30); /* Emanuele Munarini, May 27 2011 */
-
[sum(factorial(n)*fibonacci(n-k+1)/factorial(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 30 2021
A005921
From solution to a difference equation.
Original entry on oeis.org
1, 3, 10, 48, 312, 2520, 24480, 277200, 3588480, 52254720, 845510400, 15048633600, 292190976000, 6146069529600, 139223731046400, 3379030566912000, 87478184521728000, 2406225451069440000, 70080382582898688000
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A052568
E.g.f.: (1-x)/(1-3*x+x^2).
Original entry on oeis.org
1, 2, 10, 78, 816, 10680, 167760, 3074400, 64391040, 1517201280, 39720844800, 1143895737600, 35937095040000, 1223098971494400, 44829605505484800, 1760481463732992000, 73744004937867264000, 3282093293695856640000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Apart from signs, row sums of
A079461.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1-x)/(1-3*x+x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 23 2018
-
spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
a:= n-> n! * (Matrix([[1,1]]). Matrix([[3,1], [ -1,0]])^n)[1,1]: seq(a(n), n=0..20); # Alois P. Heinz, Jun 01 2009
-
With[{nn=20},CoefficientList[Series[(1-x)/(1-3x+x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 07 2012 *)
Table[Fibonacci[2n+1] n!, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 29 2015 *)
-
x='x+O('x^30); Vec(serlaplace((1-x)/(1-3*x+x^2))) \\ G. C. Greubel, May 23 2018
A274844
The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1
Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
- Richard P. Feynman, QED, The strange theory of light and matter, 1985.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Logarithmic Transform.
- Wikipedia, Feynman diagram
-
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
-
nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)
A194938
Triangle read by rows: coefficients of polynomials p(x,n) defined by 1/(1-t-t^2)^x = Sum_{n=1..oo} p(x,n)*t^n/n!.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 8, 9, 1, 0, 42, 59, 18, 1, 0, 264, 450, 215, 30, 1, 0, 2160, 4114, 2475, 565, 45, 1, 0, 20880, 43512, 30814, 9345, 1225, 63, 1, 0, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1, 0, 3064320, 7235568, 6316316, 2673972, 594489, 69552
Offset: 1
Triangle begins
1;
0, 1;
0, 3, 1;
0, 8, 9, 1;
0, 42, 59, 18, 1;
0, 264, 450, 215, 30, 1;
0, 2160, 4114, 2475, 565, 45, 1;
0, 20880, 43512, 30814, 9345, 1225, 63, 1;
0, 236880, 528492, 420756, 154609, 27720, 2338, 84, 1;
0, 3064320, 7235568, 6316316, 2673972, 594489, 69552, 4074, 108, 1;
0, 44634240, 110499696, 103889700, 49087520, 12803175, 1887753, 154350,6630,135,1;
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
-
# The function BellMatrix is defined in A264428.
with(combinat): g := n -> factorial(n)*(fibonacci(n)+fibonacci(n+2)):
BellMatrix(g, 10); # Peter Luschny, Jan 21 2016
-
p[t_] = 1/(1 - t - t^2)^x; Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
(* Second program *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, n!*(Fibonacci[n] + Fibonacci[n+2])], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
# uses[bell_matrix from A264428]
bell_matrix(lambda n: factorial(n)*(fibonacci(n)+fibonacci(n+2)), 8) # Peter Luschny, Jan 21 2016
A364422
Expansion of e.g.f. x^2/(1-x-x^2)^2.
Original entry on oeis.org
0, 0, 2, 12, 120, 1200, 14400, 191520, 2862720, 47174400, 852768000, 16765056000, 356377190400, 8144943206400, 199202395392000, 5191467240960000, 143634952581120000, 4204936774950912000, 129865748246986752000, 4219868533182382080000, 143918318293689139200000
Offset: 0
a(6)=14400 since the number of ways to partition [6] into blocks of size at most 2, order the blocks, order the elements within each block, and select 2 elements from a block are the following:
(i) 12,3,4,5,6: 3600 such orderings, 1 way to choose 2 elements (from the block with 2 elements), hence 3600 ways;
(ii) 12,34,5,6: 4320 such orderings, 2 ways to choose 2 elements (from one of the two blocks with 2 elements), hence 8640 ways.
(iii) 12,34,56: 720 such orderings, 3 ways to choose 2 elements (from one of the three blocks with 2 elements), hence 2160 ways.
-
With[{m = 20}, Range[0, m]! * CoefficientList[Series[x^2/(1 - x - x^2)^2, {x, 0, m}], x]] (* Amiram Eldar, Sep 02 2023 *)
A005924
From solution to a difference equation.
Original entry on oeis.org
1, 7, 49, 415, 4321, 53887, 783889, 13031935
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A039929
Second column of Fibonacci Jabotinsky-triangle A039692.
Original entry on oeis.org
0, 1, 9, 59, 450, 4114, 43512, 528492, 7235568, 110499696, 1862118720, 34342356960, 688092312960, 14886351037440, 345878769358080, 8590707803462400, 227153424885811200, 6371121297516595200
Offset: 1
-
With[{nn=20},CoefficientList[Series[Log[1-x-x^2]^2/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 11 2017 *)
A247504
Square array read by antidiagonals, A(n,k) = k!*[x^k]((1-Sum_{j=1..n} x^j)^(-1)), (n>=0,k>=0).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 6, 0, 1, 1, 4, 18, 24, 0, 1, 1, 4, 24, 120, 120, 0, 1, 1, 4, 24, 168, 960, 720, 0, 1, 1, 4, 24, 192, 1560, 9360, 5040, 0, 1, 1, 4, 24, 192, 1800, 17280, 105840, 40320, 0, 1, 1, 4, 24, 192, 1920, 20880, 221760, 1370880, 362880, 0
Offset: 0
n\k[0][1][2] [3] [4] [5] [6] [7] [8] [9]
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
[1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880 [A000142]
[2] 1, 1, 4, 18, 120, 960, 9360, 105840, 1370880, 19958400 [A005442]
[3] 1, 1, 4, 24, 168, 1560, 17280, 221760, 3265920, 54069120
[.] . . . . . . . . . . . . .
oo] 1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280 [A002866]
'
As a triangular array, starts:
1,
1, 0,
1, 1, 0,
1, 1, 2, 0,
1, 1, 4, 6, 0,
1, 1, 4, 18, 24, 0,
1, 1, 4, 24, 120, 120, 0,
1, 1, 4, 24, 168, 960, 720, 0.
-
A := (n,k) -> k!*coeff(series((1-add(x^j, j=1..n))^(-1),x,k+2),x,k): seq(print(seq(A(n,k), k=0..9)), n=0..7);
A365293
a(n) = n!*tetranacci(n+3).
Original entry on oeis.org
1, 1, 4, 24, 192, 1800, 20880, 282240, 4354560, 75479040, 1455148800, 30855686400, 713712384000, 17884003737600, 482619020083200, 13954193180928000, 430360865206272000, 14102295149150208000, 489295008086556672000, 17919783031425859584000
Offset: 0
a(5) = 1800 since the number of ways to partition [5] into blocks of size at most 4, order the blocks, and order the elements within each block are the following:
1) 1234,5: 10 such ordered blocks; 240 ways;
2) 123,4,5: 60 such ordered blocks; 360 ways;
3) 123,45: 20 such ordered blocks; 240 ways;
4) 12,34,5: 90 such ordered blocks; 360 ways;
5) 12,3,4,5: 240 such ordered blocks; 480 ways;
6) 1,2,3,4,5: 120 such ordered blocks; 120 ways.
-
Table[n! SeriesCoefficient[1/(1-x-x^2-x^3-x^4),{x,0,n}],{n,0,19}] (* Stefano Spezia, Aug 31 2023 *)
Comments