cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A038035 Number of labeled dyslexic planted planar trees with n+1 nodes.

Original entry on oeis.org

1, 2, 9, 72, 840, 12780, 238770, 5281920, 134946000, 3909578400, 126638542800, 4535037460800, 177904622095200, 7586967310322400, 349479111223242000, 17292052928037888000, 914673660594613920000, 51506610632458293312000, 3076341001739003430432000
Offset: 1

Views

Author

Christian G. Bower, Sep 15 1998

Keywords

Crossrefs

Programs

  • Mathematica
    m = 20;
    CoefficientList[InverseSeries[2*x*(1 - x)/(2 - x^2) + O[x]^m], x]*Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 08 2019 *)
  • PARI
    Vec(serlaplace(serreverse(2*x*(1 - x)/(2 - x^2) + O(x^20)))) \\ Andrew Howroyd, Sep 19 2018

Formula

Divides by n and shifts left under "BIJ" (reversible, indistinct, labeled) transform.
E.g.f.: series reversion of 2*x*(1 - x)/(2 - x^2). - Andrew Howroyd, Sep 19 2018

Extensions

Terms a(16) and beyond from Andrew Howroyd, Sep 19 2018

A112948 Number of unrooted 3-regular planar maps with 2n vertices, up to orientation-preserving isomorphisms.

Original entry on oeis.org

2, 6, 26, 191, 1904, 22078, 282388, 3848001, 54953996, 814302292
Offset: 1

Views

Author

Valery A. Liskovets, Oct 10 2005

Keywords

Comments

A 3-regular map is a regular map with valency 3.

Examples

			There exist 2 planar maps with two 3-valent vertices: a map with three parallel edges and a map with one loop in each vertex and a link connecting the vertices. Therefore a(1)=2.
		

Crossrefs

Cf. A112944, A112945, A112949 (5-regular), A005470.
3-regular maps on the torus: A292408.

A145269 Number of simple nonplanar graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 14, 222, 5380, 194815, 10864252, 1000316856, 164757860141
Offset: 0

Views

Author

Eric W. Weisstein, Oct 05 2008

Keywords

Crossrefs

Cf. A145270.

Formula

a(n) = A000088(n) - A005470(n).

Extensions

Edited by Max Alekseyev, Sep 18 2009
a(12) added by Max Alekseyev, Aug 17 2015

A307071 Number of simple graphs on n nodes with crossing number 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 12, 162, 3183, 74696, 1892122
Offset: 1

Views

Author

Eric W. Weisstein, Mar 22 2019

Keywords

Examples

			5-node: K_5.
6-node: includes K_{1,2,3}, K_5+K_1, (5-1)-lollipop, 2 X 3 queen, utility graph K_{3,3}.
		

Crossrefs

Cf. A005470 (graphs with crossing number 0).
Cf. A307072 (connected graphs with crossing number 1).

Extensions

a(9) from Eric W. Weisstein, Apr 17 2019
a(10) from Eric W. Weisstein, Apr 28 2019

A003584 Unicursal (i.e., possessing an Eulerian path) planar rooted maps with n edges.

Original entry on oeis.org

1, 2, 9, 52, 336, 2304, 16368, 118976, 878592, 6562816, 49447424, 375072768, 2860343296, 21909012480, 168425533440, 1298753372160, 10041201131520, 77809145610240, 604138825973760, 4698956908462080, 36604934482821120
Offset: 0

Views

Author

Keywords

Comments

Unicursal (in a broad sense) means that no more than two vertices are of odd valency (that is maps possessing an Eulerian path or cycle).

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(n-1)*(3*Binomial[2*n, n]/((n+1)*(n+2))+Binomial[2*n-1, n]); a[0]=1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 11 2014 *)

Formula

a(n) = A000257(n) + A069720(n).

Extensions

More terms from Valery A. Liskovets, Apr 07 2002

A049369 Number of n-node planar graphs with minimum degree at least 1.

Original entry on oeis.org

0, 1, 2, 7, 22, 109, 680, 6144, 72887, 1061063, 17540092, 314631443
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A005470.

Extensions

a(12) from Sean A. Irvine, Aug 13 2021

A069732 Number of nonisomorphic unrooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 0, 2, 7, 40, 239, 1549, 10396, 71467, 498598, 3520015, 25087426, 180249182, 1304148015, 9494015372, 69492950976, 511147940104, 3776180492129, 28007532925171, 208474866181148
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A003645[n_] := 2^n CatalanNumber[n + 1];
    A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
    A069725[n_] := If[n <= 2, 1, With[{m = Floor[(n + 1)/2]}, 1/n 2^(n - 3) Binomial[2 n - 2, n - 1] + 2^(m - 3) Binomial[2 m - 2, m - 1]]];
    a[n_] := If[n == 1, 0, A069724[n] - A003645[n - 2] - A069725[n]];
    Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)

Formula

a(n) = A069724(n) - A003645(n) - A069725(n).

A119501 Number of isomorphism classes of 3-connected simple planar graphs (convex polytopes) where isomorphism does not allow reflection.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 45, 419, 4798, 62754, 872411, 12728018, 192324654, 2991463239, 47663036427, 775158142233, 12831576165782
Offset: 1

Views

Author

Brendan McKay, Jun 02 2006

Keywords

Comments

If reflection is allowed, the counts are A000944.

Crossrefs

Cf. A005470.

A173422 Partials sums of A003094 (unlabeled connected planar simple graphs with n nodes).

Original entry on oeis.org

1, 2, 3, 5, 11, 31, 130, 776, 6750, 78635, 1131440, 18580739, 331953037
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2010

Keywords

Comments

Partials sums of number of unlabeled connected planar simple graphs with n nodes. The subsequence of primes in these partial sums begins: 2, 3, 5, 11, 31.

Examples

			a(11) = 1 + 1 + 1 + 2 + 6 + 20 + 99 + 646 + 5974 + 71885 + 1052805 + 17449299.
		

Crossrefs

Cf. A003094, inverse Euler transform of A005470, A126201.

Programs

Formula

a(n) = Sum_{i=0..n} A003094(i).

Extensions

Edited and a(12) added by M. F. Hasler, Mar 20 2018

A298445 Triangle T(n,k) read by rows: number of n-node simple graphs with rectilinear crossing number k (k=0..A014540(n)).

Original entry on oeis.org

1, 2, 4, 11, 33, 1, 142, 12, 1, 1, 822, 162, 39, 16, 1, 2, 1, 0, 0, 1, 6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1, 79853
Offset: 1

Views

Author

Eric W. Weisstein, Jan 19 2018

Keywords

Comments

Computed up to n=8 using data provided by Geoffrey Exoo. (There appear to be some problems with n=9 data.)

Examples

			Triangle begins:
1
2
4
11
33, 1
142, 12, 1, 1
822, 162, 39, 16, 1, 2, 1, 0, 0, 1
6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1
		

Crossrefs

Cf. A014540 (rectilinear crossing number for K_n).
Cf. A298446 (counts for simple connected graphs).
Cf. A307071 (number of simple graphs with crossing number 1).

Formula

T(n,0) = A005470(n).
T(n,1) = A307071(n).
kmax(n) = A014540(n).
T(n,kmax(n)) = 1 for n > 4.
Sum_{k=0..kmax(n)} T(n,k) = A000088(n).

Extensions

Corrected by Eric W. Weisstein, Mar 28 2019
Previous Showing 21-30 of 36 results. Next