A038035
Number of labeled dyslexic planted planar trees with n+1 nodes.
Original entry on oeis.org
1, 2, 9, 72, 840, 12780, 238770, 5281920, 134946000, 3909578400, 126638542800, 4535037460800, 177904622095200, 7586967310322400, 349479111223242000, 17292052928037888000, 914673660594613920000, 51506610632458293312000, 3076341001739003430432000
Offset: 1
-
m = 20;
CoefficientList[InverseSeries[2*x*(1 - x)/(2 - x^2) + O[x]^m], x]*Range[0, m - 1]! // Rest (* Jean-François Alcover, Sep 08 2019 *)
-
Vec(serlaplace(serreverse(2*x*(1 - x)/(2 - x^2) + O(x^20)))) \\ Andrew Howroyd, Sep 19 2018
A112948
Number of unrooted 3-regular planar maps with 2n vertices, up to orientation-preserving isomorphisms.
Original entry on oeis.org
2, 6, 26, 191, 1904, 22078, 282388, 3848001, 54953996, 814302292
Offset: 1
There exist 2 planar maps with two 3-valent vertices: a map with three parallel edges and a map with one loop in each vertex and a link connecting the vertices. Therefore a(1)=2.
- Z. C. Gao, V. A. Liskovets and N. C. Wormald, Enumeration of unrooted odd-valent regular planar maps, Preprint, 2005.
- Mark van Hoeij, Vijay Jung Kunwar, Classifying (near)-Belyi maps with Five Exceptional Points, arXiv preprint arXiv:1604.08158, 2016. Also in Indagationes Mathematicae (2019) Vol. 30, No. 1, 136-156.
- Riccardo Murri, Fatgraph algorithms and the homology of the Kontsevich complex, arXiv preprint arXiv:1202.1820, 2012.
3-regular maps on the torus:
A292408.
A145269
Number of simple nonplanar graphs on n nodes.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 14, 222, 5380, 194815, 10864252, 1000316856, 164757860141
Offset: 0
- Slavik Jablan, Ljiljana Radovic, Radmila Sazdanovic (2011). Nonplanar graphs derived from Gauss codes of virtual knots and links, J. Math. Chem. 49(10), 2250-2267, DOI:10.1007/s10910-011-9884-6
- Eric Weisstein's World of Mathematics, Nonplanar Graph
A307071
Number of simple graphs on n nodes with crossing number 1.
Original entry on oeis.org
0, 0, 0, 0, 1, 12, 162, 3183, 74696, 1892122
Offset: 1
5-node: K_5.
6-node: includes K_{1,2,3}, K_5+K_1, (5-1)-lollipop, 2 X 3 queen, utility graph K_{3,3}.
Cf.
A005470 (graphs with crossing number 0).
Cf.
A307072 (connected graphs with crossing number 1).
A003584
Unicursal (i.e., possessing an Eulerian path) planar rooted maps with n edges.
Original entry on oeis.org
1, 2, 9, 52, 336, 2304, 16368, 118976, 878592, 6562816, 49447424, 375072768, 2860343296, 21909012480, 168425533440, 1298753372160, 10041201131520, 77809145610240, 604138825973760, 4698956908462080, 36604934482821120
Offset: 0
-
a[n_] := 2^(n-1)*(3*Binomial[2*n, n]/((n+1)*(n+2))+Binomial[2*n-1, n]); a[0]=1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 11 2014 *)
A049369
Number of n-node planar graphs with minimum degree at least 1.
Original entry on oeis.org
0, 1, 2, 7, 22, 109, 680, 6144, 72887, 1061063, 17540092, 314631443
Offset: 1
A069732
Number of nonisomorphic unrooted unicursal planar maps with n edges and no vertices of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).
Original entry on oeis.org
0, 0, 2, 7, 40, 239, 1549, 10396, 71467, 498598, 3520015, 25087426, 180249182, 1304148015, 9494015372, 69492950976, 511147940104, 3776180492129, 28007532925171, 208474866181148
Offset: 1
-
A003645[n_] := 2^n CatalanNumber[n + 1];
A069724[n_] := 1/(2 n) DivisorSum[n, If[OddQ[n/#], EulerPhi[n/#] 2^(# - 2) Binomial[2 #, #], 0] &] + If[OddQ[n], 2^((n - 3)/2) Binomial[n - 1, (n - 1)/2], 2^((n - 6)/2) Binomial[n, n/2]];
A069725[n_] := If[n <= 2, 1, With[{m = Floor[(n + 1)/2]}, 1/n 2^(n - 3) Binomial[2 n - 2, n - 1] + 2^(m - 3) Binomial[2 m - 2, m - 1]]];
a[n_] := If[n == 1, 0, A069724[n] - A003645[n - 2] - A069725[n]];
Array[a, 20] (* Jean-François Alcover, Aug 28 2019 *)
A119501
Number of isomorphism classes of 3-connected simple planar graphs (convex polytopes) where isomorphism does not allow reflection.
Original entry on oeis.org
0, 0, 0, 1, 2, 8, 45, 419, 4798, 62754, 872411, 12728018, 192324654, 2991463239, 47663036427, 775158142233, 12831576165782
Offset: 1
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph.
- Gunnar Brinkmann and Brendan McKay, plantri and fullgen programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
- CombOS - Combinatorial Object Server, generate planar graphs
A173422
Partials sums of A003094 (unlabeled connected planar simple graphs with n nodes).
Original entry on oeis.org
1, 2, 3, 5, 11, 31, 130, 776, 6750, 78635, 1131440, 18580739, 331953037
Offset: 0
a(11) = 1 + 1 + 1 + 2 + 6 + 20 + 99 + 646 + 5974 + 71885 + 1052805 + 17449299.
A298445
Triangle T(n,k) read by rows: number of n-node simple graphs with rectilinear crossing number k (k=0..A014540(n)).
Original entry on oeis.org
1, 2, 4, 11, 33, 1, 142, 12, 1, 1, 822, 162, 39, 16, 1, 2, 1, 0, 0, 1, 6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1, 79853
Offset: 1
Triangle begins:
1
2
4
11
33, 1
142, 12, 1, 1
822, 162, 39, 16, 1, 2, 1, 0, 0, 1
6966, 3183, 1291, 559, 172, 82, 48, 12, 15, 8, 4, 1, 3, 0, 0, 1, 0, 0, 0, 1
Cf.
A014540 (rectilinear crossing number for K_n).
Cf.
A298446 (counts for simple connected graphs).
Cf.
A307071 (number of simple graphs with crossing number 1).
Comments