A339609
Consider a triangle drawn on the perimeter of a triangular lattice with side length n. a(n) is the number of regions inside the triangle after drawing unit circles centered at each lattice point inside the triangle.
Original entry on oeis.org
0, 0, 4, 10, 22, 39, 61, 88, 120, 157, 199, 246, 298, 355, 417, 484, 556, 633, 715, 802, 894, 991, 1093, 1200, 1312, 1429, 1551, 1678, 1810, 1947, 2089, 2236, 2388, 2545, 2707, 2874, 3046, 3223, 3405, 3592, 3784, 3981, 4183, 4390, 4602, 4819, 5041, 5268, 5500, 5737
Offset: 1
-
Join[{0, 0, 4}, Table[(5 n^2 - 21 n + 24)/2, {n, 4, 60}]]
A290168
If n is even then a(n) = n^2*(n+2)/8, otherwise a(n) = (n-1)*n*(n+1)/8.
Original entry on oeis.org
0, 0, 2, 3, 12, 15, 36, 42, 80, 90, 150, 165, 252, 273, 392, 420, 576, 612, 810, 855, 1100, 1155, 1452, 1518, 1872, 1950, 2366, 2457, 2940, 3045, 3600, 3720, 4352, 4488, 5202, 5355, 6156, 6327, 7220, 7410, 8400
Offset: 0
Cf.
A000027,
A000034,
A000217,
A000384,
A001105,
A005476,
A008805,
A011379,
A022998,
A026741,
A049450,
A059270,
A129194,
A135713,
A161680,
A249264.
-
a[n_] := If[EvenQ[n], n^2*(n + 2)/8, (n - 1)*n*(n + 1)/8]; Table[a[n], {n, 0, 40}]
-
a(n) = if(n%2==0, n^2*(n+2)/8, (n-1)*n*(n+1)/8) \\ Felix Fröhlich, Jul 23 2017
A361226
Square array T(n,k) = k*((1+2*n)*k - 1)/2; n>=0, k>=0, read by antidiagonals upwards.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 0, 2, 5, 3, 0, 3, 9, 12, 6, 0, 4, 13, 21, 22, 10, 0, 5, 17, 30, 38, 35, 15, 0, 6, 21, 39, 54, 60, 51, 21, 0, 7, 25, 48, 70, 85, 87, 70, 28, 0, 8, 29, 57, 86, 110, 123, 119, 92, 36, 0, 9, 33, 66, 102, 135, 159, 168, 156, 117, 45
Offset: 0
The rows are
0, 0, 1, 3, 6, 10, 15, 21, ... = A161680
0, 1, 5, 12, 22, 35, 51, 70, ... = A000326
0, 2, 9, 21, 38, 60, 87, 119, ... = A005476
0, 3, 13, 30, 54, 85, 123, 168, ... = A022264
0, 4, 17, 39, 70, 110, 159, 217, ... = A022266
... .
Columns: A000004, A001477, A016813, A017197=3*A016777, 2*A017101, 5*A016873, 3*A017581, 7*A017017, ... (coefficients from A026741).
Difference between two consecutive rows: A000290. Hence A143844.
This square array read by antidiagonals leads to the triangle
0
0 0
0 1 1
0 2 5 3
0 3 9 12 6
0 4 13 21 22 10
0 5 17 30 38 35 15
... .
Cf.
A000004,
A000290,
A000326,
A001477,
A002414,
A005476,
A016777,
A016813,
A016873,
A017017,
A017101,
A017197,
A017581,
A022264,
A022266,
A026741,
A034827,
A160378,
A161680,
A360962.
-
T[n_, k_] := k*((2*n + 1)*k - 1)/2; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 05 2023 *)
-
a(n) = { my(row = (sqrtint(8*n+1)-1)\2, column = n - binomial(row + 1, 2)); binomial(column, 2) + column^2 * (row - column) } \\ David A. Corneth, Mar 05 2023
-
# Seen as a triangle:
from functools import cache
@cache
def Trow(n: int) -> list[int]:
if n == 0: return [0]
r = Trow(n - 1)
return [r[k] + k * k if k < n else r[n - 1] + n - 1 for k in range(n + 1)]
for n in range(7): print(Trow(n)) # Peter Luschny, Mar 05 2023
A212267
Array A(i,j) read by antidiagonals: A(i,j) is the (2*i-1)-th derivative of tan(tan(tan(...tan(x)))) nested j times evaluated at 0.
Original entry on oeis.org
1, 1, 2, 1, 4, 16, 1, 6, 72, 272, 1, 8, 168, 2896, 7936, 1, 10, 304, 10672, 203904, 353792, 1, 12, 480, 26400, 1198080, 22112000, 22368256, 1, 14, 696, 52880, 4071040, 208521728, 3412366336, 1903757312, 1, 16, 952, 92912, 10373760, 976629760, 51874413568, 709998153728, 209865342976
Offset: 1
Array A(i,j) begins:
. 1, 1, 1, 1, 1, ...
. 2, 4, 6, 8, 10, ...
. 16, 72, 168, 304, 480, ...
. 272, 2896, 10672, 26400, 52880, ...
. 7936, 203904, 1198080, 4071040, 10373760, ...
. 353792, 22112000, 208521728, 976629760, 3172514560, ...
Evaluate the (2*3-1)th derivate of tan(tan(tan(x))) at 0, which is 168. Thus A(3,3)=168.
-
A:= (i, j)-> (D@@(2*i-1))(tan@@j)(0):
seq(seq(A(i, 1+d-i), i=1..d), d=1..8); # Alois P. Heinz, May 13 2012
-
A[a_, b_] :=
A[a, b] =
Array[D[Nest[Tan, x, #2], {x, 2*#1 - 1}] /. x -> 0 &, {a, b}];
Print[A[7, 7] // MatrixForm];
Table2 = {};
k = 1;
While[k < 8, Table1 = {};
i = 1;
j = k;
While[0 < j,
AppendTo[Table1, First[Take[First[Take[A[7, 7], {i, i}]], {j, j}]]];
j = j - 1;
i = i + 1];
AppendTo[Table2, Table1];
k++];
Print[Flatten[Table2]];
Print[Table[Det[A[n, n]], {n, 1, 7}]];
Table[(2^(11/12 +
1/2 (5 + 3 (-1 + n)) (-1 + n)) 3^(-(1/2) (-1 +
n) n) Glaisher^3 \[Pi]^-n BarnesG[1/2 + n] BarnesG[1 + n] BarnesG[3/2 + n])/E^(1/4), {n, 1, 7}]
Comments