cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A064036 Number of walks of length n on cubic lattice, starting at origin, staying in first (nonnegative) octant.

Original entry on oeis.org

1, 3, 12, 51, 234, 1110, 5460, 27405, 140490, 729918, 3845016, 20447658, 109801692, 593806356, 3234529584, 17715445605, 97567971930, 539701180590, 2998595422680, 16719506691030, 93559970043540, 525093580540620, 2955822168597480, 16680150247605390, 94365481922990460
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Examples

			a(2)=12 since a(1) is obviously 3 and from each of these three positions there are four possible steps which remain in the first octant.
		

Crossrefs

Cf. A064037. The two- and one-dimensional equivalents are A005566 and A001405. With no restriction on the walks, the number is 6^n, i.e. A000400.

Programs

  • Maple
    S:= series((BesselI(0,2*x)+BesselI(1,2*x))^3, x, 101):
    seq(simplify(coeff(S,x,n))*n!, n=0..100); # Robert Israel, Oct 10 2016

Formula

a(n) = sum_j[C(n, j)B(j)B(j+1)B(n-j)] where B(k)=C(k, [k/2])=A001405(k)
E.g.f.: (BesselI(0, 2*x)+BesselI(1, 2*x))^3. - Vladeta Jovovic, Apr 28 2003
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: (n+1)*(n+2)*(n+3)*a(n) = 4*(5*n^2+10*n+3)*a(n-1) + 4*(n-1)*(10*n^2+10*n-9)*a(n-2) - 144*(n-2)*(n-1)*a(n-3) - 144*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 6^(n + 3/2) / (Pi*n)^(3/2). (End)

A360858 Triangle read by rows. T(n, k) = binomial(n + 1, ceil(k/2)) * binomial(n, floor(k/2)).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 12, 18, 1, 5, 20, 40, 60, 1, 6, 30, 75, 150, 200, 1, 7, 42, 126, 315, 525, 700, 1, 8, 56, 196, 588, 1176, 1960, 2450, 1, 9, 72, 288, 1008, 2352, 4704, 7056, 8820, 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752
Offset: 0

Views

Author

Peter Luschny, Feb 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 1,  2;
[2] 1,  3,  6;
[3] 1,  4, 12,  18;
[4] 1,  5, 20,  40,   60;
[5] 1,  6, 30,  75,  150,  200;
[6] 1,  7, 42, 126,  315,  525,   700;
[7] 1,  8, 56, 196,  588, 1176,  1960,  2450;
[8] 1,  9, 72, 288, 1008, 2352,  4704,  7056,  8820;
[9] 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752.
		

Crossrefs

Cf. A005566 (main diagonal), A001700 (row sums).

Programs

  • Maple
    A360858 := (n, k) -> binomial(n + 1, ceil(k/2))*binomial(n, floor(k/2)):
    seq(seq(A360858(n, k), k = 0..n), n = 0..9);
  • Python
    from math import comb
    def A360858_T(n,k): return comb(n,m:=k>>1)**2*(n+1)//(m+1 if k&1 else n+1-m) # Chai Wah Wu, Feb 28 2023

A120406 Triangle read by rows: related to series expansion of the square root of 2 linear factors.

Original entry on oeis.org

1, 2, 2, 5, 6, 5, 14, 18, 18, 14, 42, 56, 60, 56, 42, 132, 180, 200, 200, 180, 132, 429, 594, 675, 700, 675, 594, 429, 1430, 2002, 2310, 2450, 2450, 2310, 2002, 1430, 4862, 6864, 8008, 8624, 8820, 8624, 8008, 6864, 4862
Offset: 0

Views

Author

David Callan, Jul 03 2006

Keywords

Comments

The numbers T(n,k) arise in the expansion of the square root of 2 generic linear factors: 1 - sqrt((1-a*x)*(1-b*x)) = (a+b)*x/2 + (1/8)*(b-a)^2*x^2*Sum_{n>=0} (Sum_{k=0..n} T(n,k)*a^k*b^(n-k))*(x/4)^n. (The g.f. below simply reformulates this fact.) A combinatorial interpretation of T(n,k) would be very interesting.

Examples

			Table begins
  \ k..0....1....2....3....4....5....6
  n
  0 |..1
  1 |..2....2
  2 |..5....6....5
  3 |.14...18...18...14
  4 |.42...56...60...56...42
  5 |132..180..200..200..180..132
  6 |429..594..675..700..675..594..429
		

Crossrefs

Column k=0 is the Catalan numbers A000108 (offset). The middle-of-row entries form A005566. Cf. A067804.

Programs

  • Mathematica
    Table[2 Binomial[n,k]^2 Binomial[2n+2,n]/ Binomial[2n+2,2k+1],{n,0,9},{k,0,n}]
  • Maxima
    solve(A=x*(A^2*y^2-2*A^2*y-2*A*y+A^2-2*A+1),A); /* Vladimir Kruchinin, Oct 24 2020 */

Formula

T(n,k) = 2*binomial(n,k)^2*binomial(2n+2,n)/binomial(2n+2,2k+1). This shows that T(n,k) is positive and the rows are symmetric.
T(n,k) = (k+1)*CatalanNumber(n+1) - 2*Sum_{j=0..k-1} (k-j)*CatalanNumber(j)*CatalanNumber(n-j). This shows that T(n,k) is an integer.
G.f.: F(x,y):=Sum_{n>=0, k=0..n} T(n,k) x^n y^k is given by F(x,y) = ( 1-2x-2x*y-sqrt(1-4x)*sqrt(1-4x*y) )/( 2x^2*(1-y)^2 ). This shows that the row sums are the powers of 4 (A000302) because lim_{y->1} F(x,y) = 1/(1-4x).
1 + x*(d/dx)(log(F(x,y))) = 1 + (2 + 2*y)*x + (6 + 4*y + 6*y^2)*x^2 + ... is the o.g.f. for A067804. - Peter Bala, Jul 17 2015
G.f. A(x,y) = -G(-x,y), G(x,y) satisfies G(x,y) = x/A008459(G(x,y))^2. - Vladimir Kruchinin, Oct 24 2020

A172101 Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 25 2010

Keywords

Comments

Number of symmetric Dyck paths of semilength n with k peaks.

Examples

			Triangle begins :
  1;
  0,  1;
  0,  1,  1;
  0,  1,  1,  1;
  0,  1,  2,  2,  1;
  0,  1,  2,  4,  2,   1;
  0,  1,  3,  6,  6,   3,   1;
  0,  1,  3,  9,  9,   9,   3,   1;
  0,  1,  4, 12, 18,  18,  12,   4,   1;
  0,  1,  4, 16, 24,  36,  24,  16,   4,  1;
  0,  1,  5, 20, 40,  60,  60,  40,  20,  5,  1;
  0,  1,  5, 25, 50, 100, 100, 100,  50, 25,  5,  1;
  0,  1,  6, 30, 75, 150, 200, 200, 150, 75, 30,  6,  1;
		

Crossrefs

Cf. A001405 (row sums), A005566, A084938, A088518 (diagonal sums), A088855.
Column k: A000007 (k=0), A000012 (k=1), A008619 (k=2), A002620 (k=3), A028724 (k=4), A028723 (k=5), A028725 (k=6), A331574 (k=7).

Programs

  • Magma
    [n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
  • Sage
    def A172101(n,k):
        if (n==0): return 1
        else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
    flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022

Formula

Sum_{k=0..n} T(n,k) = A001405(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = [n=0] - [n=1] + A088518(n)*[n >= 1].
From G. C. Greubel, Apr 08 2022: (Start)
T(n, k) = binomial(floor((n-1)/2), floor((k-1)/2))*binomial(floor(n/2), floor(k/2)).
T(2*n, n) = [n=0] + A005566(n-1)*[n >= 1].
T(n-1, n-k) = T(n-1, k), n >= 1, 1 <= k <= n. (End)

A378069 a(n) = Sum_{k=0..n} binomial(n, floor(k/2 - 1/2)) * binomial(n, ceiling(k/2 - 1/2)).

Original entry on oeis.org

0, 1, 3, 13, 45, 181, 658, 2605, 9705, 38251, 144606, 569317, 2173262, 8556822, 32890068, 129565485, 500583105, 1973295775, 7654363750, 30194784763, 117497078842, 463820452602, 1809540528588, 7147843461733, 27946421773270, 110458073192026, 432648616232028
Offset: 0

Views

Author

Peter Luschny, Dec 14 2024

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n, floor(k/2 - 1/2))*binomial(n, ceil(k/2 - 1/2)), k=0..n):
    seq(a(n), n = 0..26);

A104856 Triangle read by rows: T(n,k) = binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)) (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 6, 12, 24, 12, 6, 10, 30, 60, 60, 30, 10, 20, 60, 180, 180, 180, 60, 20, 35, 140, 420, 630, 630, 420, 140, 35, 70, 280, 1120, 1680, 2520, 1680, 1120, 280, 70, 126, 630, 2520, 5040, 7560, 7560, 5040, 2520, 630, 126, 252, 1260, 6300
Offset: 0

Views

Author

Emeric Deutsch, Apr 23 2005

Keywords

Comments

T(n,k) is the number of paths in the first quadrant, starting from the origin, with unit steps up, down, right, or left, having a total of n steps, exactly k of which are vertical (up or down). Example: T(3,2)=6 because we have NNE, NEN, ENN, NSE, ENS and NES. [Emeric Deutsch, Nov 22 2008]

Crossrefs

Row sums yield A005566. T(n, 0)=T(n, n)=A001405(n).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

Formula

T(n, k) = binomial(n, k)*binomial(k, floor(k/2))*binomial(n-k, floor((n-k)/2)) (0<=k<=n).

A302185 Number of 3D n-step walks of type acc.

Original entry on oeis.org

1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Maple
    b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
    C:= n-> binomial(2*n, n)/(n+1):
    a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
    # second Maple program:
    a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
          (8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
          (80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
          (10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
           a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 06 2024
  • Mathematica
    b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
    c[n_] := Binomial[2*n, n]/(n+1);
    a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def a(n):
        return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024

Formula

From Mélika Tebni, Dec 06 2024: (Start)
E.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*BesselI(1, 2*x) / x.
a(n) = Sum_{k=0..n} binomial(n, k)*A005558(k)*A001405(n-k).
a(2*n+1) = 2*A302182(2*n+1) = A135394(n) / (n+1).
For n > 0, a(A000918(n)) is odd. (End)

Extensions

a(13)-a(25) from Mélika Tebni, Dec 06 2024

A381889 Expansion of e.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*exp(2*x).

Original entry on oeis.org

1, 4, 18, 86, 428, 2192, 11468, 60986, 328532, 1788368, 9819128, 54302712, 302157424, 1690193728, 9497996152, 53588976802, 303434431108, 1723578967056, 9818195961512, 56071829010968, 320970950634288, 1841213871449152, 10582333064327824, 60929582362628968, 351385363433883472
Offset: 0

Views

Author

Mélika Tebni, Mar 09 2025

Keywords

Comments

Binomial transform of A151093.
For p prime, a(p) - 2 == 0 (mod 2*p).

Crossrefs

Programs

  • Maple
    a := n-> add(binomial(n, k)*binomial(n-k, iquo(n-k,2))*binomial(2*k+1,k+1), k = 0 .. n): seq(a(n), n = 0 .. 24);
  • Mathematica
    len := 24; Table[n!,{n, 0, len}] CoefficientList[Series[(BesselI[0, 2x] + BesselI[1, 2x])^2 Exp[2x], {x, 0, len}], x]  (* Peter Luschny, Mar 19 2025 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace((besseli(0, 2*x) + x*besseli(1, 2*x))^2*exp(2*x))) \\ Michel Marcus, Mar 11 2025
  • Python
    from math import comb as C
    def a(n):
        return sum(C(n, k)*2**(n-k)*C(k, k//2)*C(k+1, (k+1)//2) for k in range(n+1))
    print([a(n) for n in range(25)])
    

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*2^(n-k)*A005566(k).
a(n) = Sum_{k=0..n} binomial(n, k)*A001405(n-k)*A001700(k).
a(n) = Sum_{k=0..n} binomial(n, k)*A005773(n-k+1)*A005773(k+1). - Mélika Tebni, Mar 19 2025
Previous Showing 11-18 of 18 results.