A064036
Number of walks of length n on cubic lattice, starting at origin, staying in first (nonnegative) octant.
Original entry on oeis.org
1, 3, 12, 51, 234, 1110, 5460, 27405, 140490, 729918, 3845016, 20447658, 109801692, 593806356, 3234529584, 17715445605, 97567971930, 539701180590, 2998595422680, 16719506691030, 93559970043540, 525093580540620, 2955822168597480, 16680150247605390, 94365481922990460
Offset: 0
a(2)=12 since a(1) is obviously 3 and from each of these three positions there are four possible steps which remain in the first octant.
Cf.
A064037. The two- and one-dimensional equivalents are
A005566 and
A001405. With no restriction on the walks, the number is 6^n, i.e.
A000400.
-
S:= series((BesselI(0,2*x)+BesselI(1,2*x))^3, x, 101):
seq(simplify(coeff(S,x,n))*n!, n=0..100); # Robert Israel, Oct 10 2016
A360858
Triangle read by rows. T(n, k) = binomial(n + 1, ceil(k/2)) * binomial(n, floor(k/2)).
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 12, 18, 1, 5, 20, 40, 60, 1, 6, 30, 75, 150, 200, 1, 7, 42, 126, 315, 525, 700, 1, 8, 56, 196, 588, 1176, 1960, 2450, 1, 9, 72, 288, 1008, 2352, 4704, 7056, 8820, 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 2;
[2] 1, 3, 6;
[3] 1, 4, 12, 18;
[4] 1, 5, 20, 40, 60;
[5] 1, 6, 30, 75, 150, 200;
[6] 1, 7, 42, 126, 315, 525, 700;
[7] 1, 8, 56, 196, 588, 1176, 1960, 2450;
[8] 1, 9, 72, 288, 1008, 2352, 4704, 7056, 8820;
[9] 1, 10, 90, 405, 1620, 4320, 10080, 17640, 26460, 31752.
-
A360858 := (n, k) -> binomial(n + 1, ceil(k/2))*binomial(n, floor(k/2)):
seq(seq(A360858(n, k), k = 0..n), n = 0..9);
-
from math import comb
def A360858_T(n,k): return comb(n,m:=k>>1)**2*(n+1)//(m+1 if k&1 else n+1-m) # Chai Wah Wu, Feb 28 2023
A120406
Triangle read by rows: related to series expansion of the square root of 2 linear factors.
Original entry on oeis.org
1, 2, 2, 5, 6, 5, 14, 18, 18, 14, 42, 56, 60, 56, 42, 132, 180, 200, 200, 180, 132, 429, 594, 675, 700, 675, 594, 429, 1430, 2002, 2310, 2450, 2450, 2310, 2002, 1430, 4862, 6864, 8008, 8624, 8820, 8624, 8008, 6864, 4862
Offset: 0
Table begins
\ k..0....1....2....3....4....5....6
n
0 |..1
1 |..2....2
2 |..5....6....5
3 |.14...18...18...14
4 |.42...56...60...56...42
5 |132..180..200..200..180..132
6 |429..594..675..700..675..594..429
-
Table[2 Binomial[n,k]^2 Binomial[2n+2,n]/ Binomial[2n+2,2k+1],{n,0,9},{k,0,n}]
-
solve(A=x*(A^2*y^2-2*A^2*y-2*A*y+A^2-2*A+1),A); /* Vladimir Kruchinin, Oct 24 2020 */
A172101
Triangle, read by rows, given by [0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, ...] DELTA [1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 1, 2, 4, 2, 1, 0, 1, 3, 6, 6, 3, 1, 0, 1, 3, 9, 9, 9, 3, 1, 0, 1, 4, 12, 18, 18, 12, 4, 1, 0, 1, 4, 16, 24, 36, 24, 16, 4, 1, 0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1, 0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1
Offset: 0
Triangle begins :
1;
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 1, 2, 2, 1;
0, 1, 2, 4, 2, 1;
0, 1, 3, 6, 6, 3, 1;
0, 1, 3, 9, 9, 9, 3, 1;
0, 1, 4, 12, 18, 18, 12, 4, 1;
0, 1, 4, 16, 24, 36, 24, 16, 4, 1;
0, 1, 5, 20, 40, 60, 60, 40, 20, 5, 1;
0, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1;
0, 1, 6, 30, 75, 150, 200, 200, 150, 75, 30, 6, 1;
-
[n eq 0 select 1 else (&*[Binomial(Floor((n-j)/2), Floor((k-j)/2)): j in [0..1]]): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 08 2022
-
T[n_, k_]:= Product[Binomial[Floor[(n-j)/2], Floor[(k-j)/2]], {j,0,1}];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 08 2022 *)
-
def A172101(n,k):
if (n==0): return 1
else: return product(binomial( (n-j)//2, (k-j)//2 ) for j in (0..1))
flatten([[A172101(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 08 2022
A378069
a(n) = Sum_{k=0..n} binomial(n, floor(k/2 - 1/2)) * binomial(n, ceiling(k/2 - 1/2)).
Original entry on oeis.org
0, 1, 3, 13, 45, 181, 658, 2605, 9705, 38251, 144606, 569317, 2173262, 8556822, 32890068, 129565485, 500583105, 1973295775, 7654363750, 30194784763, 117497078842, 463820452602, 1809540528588, 7147843461733, 27946421773270, 110458073192026, 432648616232028
Offset: 0
-
a := n -> add(binomial(n, floor(k/2 - 1/2))*binomial(n, ceil(k/2 - 1/2)), k=0..n):
seq(a(n), n = 0..26);
A104856
Triangle read by rows: T(n,k) = binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)) (0<=k<=n).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 6, 6, 3, 6, 12, 24, 12, 6, 10, 30, 60, 60, 30, 10, 20, 60, 180, 180, 180, 60, 20, 35, 140, 420, 630, 630, 420, 140, 35, 70, 280, 1120, 1680, 2520, 1680, 1120, 280, 70, 126, 630, 2520, 5040, 7560, 7560, 5040, 2520, 630, 126, 252, 1260, 6300
Offset: 0
- David M. Bloom et al., A Convolution of Middle Binomial Coefficients: Problem 10921, Amer. Math. Monthly 110, (2003), 958-959.
- E. Deutsch and D. Lovit, Problem 1739, Math. Magazine, vol. 80, No. 1, 2007, p. 80. [_Emeric Deutsch_, Nov 22 2008]
-
T:=(n,k)->binomial(n,k)*binomial(k,floor(k/2))*binomial(n-k,floor((n-k)/2)): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
A302185
Number of 3D n-step walks of type acc.
Original entry on oeis.org
1, 2, 7, 24, 98, 400, 1785, 7980, 37674, 178164, 874146, 4294752, 21667932, 109436184, 563910633, 2908233900, 15235550330, 79870553620, 424021948350, 2252356700880, 12088746573540, 64913104882080, 351594254659830, 1905139854213960, 10399223643879420, 56783986550235000
Offset: 0
Cf.
A000108,
A000984,
A002212,
A002896,
A005572,
A026375,
A064037,
A081671,
A138547,
A145847,
A145867,
A150500,
A202814.
-
b:= n-> binomial(n, floor(n/2))*binomial(n+1, floor((n+1)/2)):
C:= n-> binomial(2*n, n)/(n+1):
a:= n-> add(binomial(n, 2*k)*C(k)*b(n-2*k), k=0..n/2):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 2, 7, 24][n+1],
(8*(14*n^4+85*n^3+190*n^2+188*n+63)*a(n-1)+4*(n-1)*
(80*n^4+418*n^3+676*n^2+269*n-108)*a(n-2)-96*(n-1)*(n-2)*
(10*n^2+31*n+27)*a(n-3)-144*(n-1)*(n-2)*(n-3)*(8*n^2+33*n+36)*
a(n-4))/((n+4)*(n+3)*(n+2)*(8*n^2+17*n+11)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 06 2024
-
b[n_] := Binomial[n, Floor[n/2]]*Binomial[n+1, Floor[(n+1)/2]];
c[n_] := Binomial[2*n, n]/(n+1);
a[n_] := Sum[Binomial[n, 2*k]*c[k]*b[n - 2*k], {k, 0, n/2}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
-
from math import comb as binomial
def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
def a(n):
return sum(binomial(n, k)*C((k+1)//2)*C(k//2)*(2*(k//2)+1)*binomial(n-k, (n-k)//2) for k in range(n+1))
print([a(n) for n in range(26)]) # Mélika Tebni, Dec 06 2024
A381889
Expansion of e.g.f.: (BesselI(0, 2*x) + BesselI(1, 2*x))^2*exp(2*x).
Original entry on oeis.org
1, 4, 18, 86, 428, 2192, 11468, 60986, 328532, 1788368, 9819128, 54302712, 302157424, 1690193728, 9497996152, 53588976802, 303434431108, 1723578967056, 9818195961512, 56071829010968, 320970950634288, 1841213871449152, 10582333064327824, 60929582362628968, 351385363433883472
Offset: 0
-
a := n-> add(binomial(n, k)*binomial(n-k, iquo(n-k,2))*binomial(2*k+1,k+1), k = 0 .. n): seq(a(n), n = 0 .. 24);
-
len := 24; Table[n!,{n, 0, len}] CoefficientList[Series[(BesselI[0, 2x] + BesselI[1, 2x])^2 Exp[2x], {x, 0, len}], x] (* Peter Luschny, Mar 19 2025 *)
-
my(x='x+O('x^30)); Vec(serlaplace((besseli(0, 2*x) + x*besseli(1, 2*x))^2*exp(2*x))) \\ Michel Marcus, Mar 11 2025
-
from math import comb as C
def a(n):
return sum(C(n, k)*2**(n-k)*C(k, k//2)*C(k+1, (k+1)//2) for k in range(n+1))
print([a(n) for n in range(25)])
Comments