cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 178 results. Next

A056994 Numbers k such that k^128 + 1 is prime.

Original entry on oeis.org

1, 120, 190, 234, 506, 532, 548, 960, 1738, 1786, 2884, 3000, 3420, 3476, 3658, 4258, 5788, 6080, 6562, 6750, 7692, 8296, 9108, 9356, 9582, 9706, 10238, 10994, 11338, 11432, 11466, 11554, 11778, 12704, 12766, 13082, 13478, 13700
Offset: 1

Views

Author

Robert G. Wilson v, Sep 06 2000

Keywords

References

  • Dubner, Harvey. "Generalized Fermat primes." J. Recreational Math., 18 (1985): 279-280.

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ PowerMod[ n, 128, 2*k*128 + 1 ] != 2*k*128 && k < 10^3, k++ ]; If[ k == 10^3 && PrimeQ[ n^128 + 1 ], Print[ n ] ], {n, 2, 15000, 2} ]
  • PARI
    isA056994(n) = isprime(n^128+1) \\ Michael B. Porter, Mar 30 2010

A006315 Numbers n such that n^32 + 1 is prime.

Original entry on oeis.org

1, 30, 54, 96, 112, 114, 132, 156, 332, 342, 360, 376, 428, 430, 432, 448, 562, 588, 726, 738, 804, 850, 884, 1068, 1142, 1198, 1306, 1540, 1568, 1596, 1678, 1714, 1754, 1812, 1818, 1878, 1906, 1960, 1962, 2046, 2098, 2118, 2142, 2330, 2418, 2434, 2654, 2668
Offset: 1

Views

Author

Keywords

References

  • Dubner, Harvey. "Generalized Fermat primes." J. Recreational Math., 18 (1985): 279-280.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Hugo Pfoertner, Jun 22 2003

A056993 a(n) is the smallest k >= 2 such that k^(2^n)+1 is prime, or -1 if no such k exists.

Original entry on oeis.org

2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444
Offset: 0

Views

Author

Robert G. Wilson v, Sep 06 2000

Keywords

Comments

Smallest base value yielding generalized Fermat primes. - Hugo Pfoertner, Jul 01 2003
The first 5 terms correspond with the known (ordinary) Fermat primes. A probable candidate for the next entry is 62722^131072+1, discovered by Michael Angel in 2003. It has 628808 decimal digits. - Hugo Pfoertner, Jul 01 2003
For any n, a(n+1) >= sqrt(a(n)), because k^(2^(n+1))+1 = (k^2)^(2^n)+1. - Jeppe Stig Nielsen, Sep 16 2015
Does the sequence contain any perfect squares? If a(n) is a perfect square, then a(n+1) = sqrt(a(n)). - Jeppe Stig Nielsen, Sep 16 2015
If for a particular n, a(n) exists, then a(i) exist for all i=0,1,2,...,n. No proof is known that this sequence is infinite. Such a result would clearly imply the infinitude of A002496. - Jeppe Stig Nielsen, Sep 18 2015
919444 is a candidate for a(20). See Zimmermann link. - Serge Batalov, Sep 02 2017
Now PrimeGrid has tested and double checked all b^(2^20) + 1 with b < 919444, so we have proof that a(20) = 919444. - Jeppe Stig Nielsen, Dec 30 2017

Examples

			The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, ....
		

Crossrefs

Programs

  • Mathematica
    f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *)
  • PARI
    a(n)=my(k=2);while(!isprime(k^(2^n)+1),k++);k \\ Anders Hellström, Sep 16 2015

Formula

a(n) = A085398(2^(n+1)). - Jianing Song, Jun 13 2022

Extensions

1534 from Robert G. Wilson v, Oct 30 2000
62722 from Jeppe Stig Nielsen, Aug 07 2005
24518 and 75898 from Lei Zhou, Feb 01 2012
919444 from Jeppe Stig Nielsen, Dec 30 2017

A006316 Numbers k such that k^64 + 1 is prime.

Original entry on oeis.org

1, 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, 2420, 2494, 2524, 2614, 2784, 3024, 3104, 3140, 3164, 3254, 3278, 3628, 3694, 3738, 3750, 4000, 4030, 4058, 4166
Offset: 1

Views

Author

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Hugo Pfoertner, Jun 22 2003

A057002 Numbers n such that n^1024 + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, 18336, 19564, 20624, 22500, 24126, 26132, 26188, 26240, 29074, 29658, 30778, 31126, 32244, 33044, 34016
Offset: 1

Views

Author

Robert G. Wilson v, Sep 09 2000

Keywords

Comments

This sequence is infinite under Bunyakovsky's conjecture. - Charles R Greathouse IV, Apr 26 2012

Crossrefs

Other sequences of numbers n such that n^(2^k)+1 is prime for fixed k: A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
Cf. A006093.

Programs

  • Mathematica
    Do[ k = 1; While[ PowerMod[ n, 1024, 2*k*1024 + 1 ] != 2*k*1024 && k < 2*10^6, k++ ]; If[ k == 2*10^6 && PrimeQ[ n^1024 + 1 ], Print[ n ] ], {n, 2, 13954, 2} ]
    Do[If[PrimeQ[n^1024 + 1], Print[n], ## &[]], {n, 1, 100}] (* Includes first term and runs faster, Daniel Jolly, Nov 04 2014 *)
  • PARI
    isA057002(n) = isprime(n^1024+1) \\ Michael B. Porter, Apr 03 2010

Extensions

More terms from Jeppe Stig Nielsen, Sep 27 2003
Edited at the suggestion of T. D. Noe by N. J. A. Sloane, May 14 2008

A056995 Numbers k such that k^256 + 1 is prime.

Original entry on oeis.org

1, 278, 614, 892, 898, 1348, 1494, 1574, 1938, 2116, 2122, 2278, 2762, 3434, 4094, 4204, 4728, 5712, 5744, 6066, 6508, 6930, 7022, 7332, 8524, 8644, 8762, 8808, 9024, 9142, 9412, 10892, 12206, 13220, 13222, 13246, 13370, 13738, 14114, 14930
Offset: 1

Views

Author

Robert G. Wilson v, Sep 06 2000

Keywords

References

  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.

Crossrefs

Programs

  • Mathematica
    Do[ k = 1; While[ PowerMod[ n, 256, 2*k*256 + 1 ] != 2*k*256 && k < 10^3, k++ ]; If[ k == 10^3 && PrimeQ[ n^256 + 1 ], Print[ n ] ], {n, 2, 15000, 2} ]
  • PARI
    isA056995(n) = isprime(n^256+1) \\ Michael B. Porter, Apr 01 2010

A057465 Numbers k such that k^512 + 1 is prime.

Original entry on oeis.org

1, 46, 1036, 1318, 1342, 2472, 2926, 3154, 3878, 4386, 4464, 4474, 4482, 4616, 4688, 5374, 5698, 5716, 5770, 6268, 6386, 6682, 7388, 7992, 8678, 8792, 9448, 9452, 9972, 10086, 10448, 10926, 11468, 12754, 13198, 13776, 14734, 16826, 16914, 18334
Offset: 1

Views

Author

Robert G. Wilson v, Sep 08 2000

Keywords

References

  • Dubner, Harvey. "Generalized Fermat primes." J. Recreational Math., 18 (1985): 279-280.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ n^512 + 1 ], Print[ n ] ], {n, 0, 31269} ]
  • PARI
    isA057465(n) = isprime(n^512+1) \\ Michael B. Porter, Apr 02 2010

A088362 Numbers k such that k^4096 + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 1534, 7316, 17582, 18224, 28234, 34954, 41336, 48824, 51558, 51914, 57394, 61686, 62060, 89762, 96632, 98242, 100540, 101578, 109696, 110540, 114690, 125440, 125442, 127596, 138068, 144362, 154908, 157310, 161822, 161900, 166224
Offset: 1

Views

Author

Jeppe Stig Nielsen, Sep 27 2003

Keywords

Crossrefs

Programs

A088361 Numbers n such that n^2048 + 1 is prime (a generalized Fermat prime).

Original entry on oeis.org

1, 150, 2558, 4650, 4772, 11272, 13236, 15048, 23302, 26946, 29504, 31614, 33308, 35054, 36702, 37062, 39020, 39056, 43738, 44174, 45654, 46502, 47348, 49190, 49204, 49544, 54514, 57210, 59770, 61184, 66894, 68194, 70574, 72446, 82642
Offset: 1

Views

Author

Jeppe Stig Nielsen, Sep 27 2003

Keywords

Crossrefs

Programs

A049422 Numbers k such that k^2 + 3 is prime.

Original entry on oeis.org

0, 2, 4, 8, 10, 14, 22, 28, 38, 50, 52, 62, 64, 70, 74, 76, 92, 94, 106, 112, 122, 130, 134, 140, 146, 154, 158, 160, 172, 178, 218, 230, 242, 244, 248, 256, 274, 286, 298, 304, 316, 322, 326, 340, 350, 356, 364, 368, 398, 406, 416, 424, 430, 434, 440, 458, 470
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Examples

			4^2 + 3 = 19, which is prime.
		

Crossrefs

Other sequences of the type "Numbers k such that k^2 + i is prime": A005574 (i=1), A067201 (i=2), this sequence (i=3), A007591 (i=4), A078402 (i=5), A114269 (i=6), A114270 (i=7), A114271 (i=8), A114272 (i=9), A114273 (i=10), A114274 (i=11), A114275 (i=12).

Programs

Previous Showing 11-20 of 178 results. Next