cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 99 results. Next

A049233 Primes p such that p + 2 is squarefree.

Original entry on oeis.org

3, 5, 11, 13, 17, 19, 29, 31, 37, 41, 53, 59, 67, 71, 83, 89, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 157, 163, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 283, 293, 307, 311, 317, 337, 347, 353, 379, 383, 389
Offset: 1

Views

Author

Keywords

Comments

A001359 (lesser of twin primes) is a subsequence. - Michel Marcus, Aug 10 2018
This sequence is infinite and its relative density in the sequence of primes is equal to 2 * Product_{p prime} (1-1/(p*(p-1))) = 2 * A005596 = 0.747911... (Mirsky, 1949). - Amiram Eldar, Dec 29 2020

Crossrefs

Programs

Extensions

Definition simplified by Michel Marcus, Dec 31 2013

A077064 Squarefree numbers of form prime - 1.

Original entry on oeis.org

1, 2, 6, 10, 22, 30, 42, 46, 58, 66, 70, 78, 82, 102, 106, 130, 138, 166, 178, 190, 210, 222, 226, 238, 262, 282, 310, 330, 346, 358, 366, 382, 418, 430, 438, 442, 462, 466, 478, 498, 502, 546, 562, 570, 586, 598, 606, 618, 642, 646, 658, 682, 690, 718, 742
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

This sequence is infinite and its relative density in the sequence of primes is equal to Artin's constant (A005596): Product_{p prime} (1-1/(p*(p-1))) = 0.373955... (Victorovich, 2013). - Amiram Eldar, Dec 29 2020

Examples

			A005117(44) = 70 = 2*5*7 is a term as 70 = A000040(20)-1 = 71-1.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]]-1,SquareFreeQ] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    isok(n) = issquarefree(n) && isprime(n+1); \\ Michel Marcus, Mar 22 2016
    
  • PARI
    lista(nn) = forprime(p=2, nn, if (issquarefree(p-1), print1(p-1, ", "))); \\ Michel Marcus, Mar 22 2016

Extensions

Wrong formula removed by Amiram Eldar, Dec 29 2020

A377172 Primes p such that -3/2 is a primitive root modulo p.

Original entry on oeis.org

17, 23, 37, 41, 43, 47, 67, 89, 109, 113, 137, 139, 157, 163, 167, 191, 229, 233, 239, 257, 263, 277, 283, 311, 349, 353, 359, 379, 383, 397, 421, 449, 479, 503, 521, 523, 541, 547, 569, 571, 593, 599, 613, 619, 641, 647, 661, 719, 733, 739, 743, 757, 761, 787, 809, 811, 839, 853, 857, 859, 863, 877, 887, 911, 929, 953, 977, 983
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then -3/2 is not a square modulo p (i.e., p is in A191059).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: this sequence (a=3), A377175 (a=5), A377177 (a=7), A377179 (a=9).

Programs

  • PARI
    forprime(p=5, 10^3, if(znorder(Mod(-3/2, p))==p-1, print1(p, ", ")));

A377174 Primes p such that 5/2 is a primitive root modulo p.

Original entry on oeis.org

11, 17, 23, 47, 59, 73, 101, 103, 109, 113, 137, 139, 149, 167, 179, 211, 223, 229, 233, 257, 263, 269, 313, 337, 349, 353, 367, 379, 383, 389, 419, 421, 433, 461, 487, 499, 503, 509, 593, 607, 617, 647, 659, 661, 673, 727, 743, 811, 821, 823, 829, 857, 859, 863, 887, 941, 953, 967, 971, 977, 983
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then 5/2 is not a square modulo p (i.e., p is in A038880).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), this sequence (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), A377177 (a=7), A377179 (a=9).

Programs

  • PARI
    forprime(p=7, 10^3, if(znorder(Mod(5/2, p))==p-1, print1(p, ", ")));

A377175 Primes p such that -5/2 is a primitive root modulo p.

Original entry on oeis.org

3, 17, 31, 43, 67, 71, 73, 79, 83, 101, 107, 109, 113, 137, 149, 163, 191, 199, 227, 229, 233, 239, 257, 269, 271, 283, 307, 311, 313, 337, 347, 349, 353, 359, 389, 421, 431, 433, 439, 443, 461, 467, 479, 509, 547, 563, 587, 593, 599, 617, 631, 661, 673, 683, 719, 821, 827, 829, 839, 857, 907, 911, 919, 941, 947, 953, 977
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then -5/2 is not a square modulo p (i.e., p is in A296925).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), this sequence (a=5), A377177 (a=7), A377179 (a=9).

Programs

  • PARI
    print1(3, ", "); forprime(p=7, 10^3, if(znorder(Mod(-5/2, p))==p-1, print1(p, ", ")));

A377176 Primes p such that 7/2 is a primitive root modulo p.

Original entry on oeis.org

3, 17, 19, 23, 29, 37, 41, 59, 73, 79, 83, 89, 109, 127, 139, 149, 191, 197, 227, 239, 251, 257, 263, 277, 283, 307, 313, 317, 353, 359, 373, 389, 409, 419, 431, 433, 467, 487, 521, 523, 541, 557, 563, 577, 587, 593, 599, 601, 619, 643, 653, 691, 701, 761, 769, 821, 857, 863, 919, 929, 937, 967, 991
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then 7/2 is not a square modulo p (i.e., p is in A038886).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), this sequence (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), A377177 (a=7), A377179 (a=9).

Programs

  • PARI
    print1(3, ", "); forprime(p=11, 10^3, if(znorder(Mod(-5/2, p))==p-1, print1(p, ", ")));

A377178 Primes p such that 9/2 is a primitive root modulo p.

Original entry on oeis.org

5, 13, 19, 29, 43, 53, 59, 61, 83, 101, 107, 109, 149, 157, 173, 179, 197, 227, 229, 251, 269, 277, 283, 293, 317, 331, 347, 373, 389, 419, 443, 461, 467, 491, 509, 523, 547, 557, 563, 587, 613, 619, 653, 661, 677, 683, 691, 701, 709, 733, 739, 757, 773, 787, 797, 821, 829, 853, 883, 907, 947, 971
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then 9/2 is not a square modulo p (i.e., p is in A003629).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), this sequence (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), A377177 (a=7), A377179 (a=9).

Programs

  • PARI
    forprime(p=5, 10^3, if(znorder(Mod(9/2, p))==p-1, print1(p, ", ")));

A377179 Primes p such that -9/2 is a primitive root modulo p.

Original entry on oeis.org

5, 13, 23, 29, 31, 47, 53, 61, 71, 79, 101, 109, 149, 151, 157, 167, 173, 191, 197, 199, 223, 229, 239, 263, 269, 277, 293, 311, 317, 359, 367, 373, 383, 389, 461, 463, 479, 487, 503, 509, 557, 599, 613, 647, 653, 661, 677, 701, 709, 719, 733, 743, 757, 773, 797, 821, 823, 829, 839, 853, 863, 887, 911, 967, 983, 991
Offset: 1

Views

Author

Jianing Song, Oct 18 2024

Keywords

Comments

If p is a term in this sequence, then -9/2 is not a square modulo p (i.e., p is in A003628).
Conjecture: this sequence has relative density equal to Artin's constant (A005596) with respect to the set of primes.

Crossrefs

Primes p such that +a/2 is a primitive root modulo p: A320384 (a=3), A377174 (a=5), A377176 (a=7), A377178 (a=9).
Primes p such that -a/2 is a primitive root modulo p: A377172 (a=3), A377175 (a=5), A377177 (a=7), this sequence (a=9).

Programs

  • PARI
    forprime(p=5, 10^3, if(znorder(Mod(-9/2, p))==p-1, print1(p, ", ")));

A007348 Primes for which -10 is a primitive root.

Original entry on oeis.org

3, 17, 29, 31, 43, 61, 67, 71, 83, 97, 107, 109, 113, 149, 151, 163, 181, 191, 193, 199, 227, 229, 233, 257, 269, 283, 307, 311, 313, 337, 347, 359, 389, 431, 433, 439, 443, 461, 467, 479, 509, 523, 541, 563, 577, 587, 593, 599, 631, 683, 701, 709, 719, 787, 821, 827, 839
Offset: 1

Views

Author

Keywords

Comments

Union of long period primes (A006883) of the form 4k+1 and half period primes (A097443) of the form 4k+3. - Davide Rotondo, Aug 25 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 24.8, p. 864.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    pr=-10; Select[Prime[Range[200 ] ], MultiplicativeOrder[pr, # ] == #-1 & ]
  • PARI
    is(n)=gcd(n,10)==1 && znorder(Mod(-10,n))==n-1 \\ Charles R Greathouse IV, Nov 25 2014

Extensions

More terms from N. J. A. Sloane, Apr 24 2005
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar
A&S reference and Mathematica program corrected by T. D. Noe, Nov 04 2009

A049231 Primes p such that p - 2 is squarefree.

Original entry on oeis.org

3, 5, 7, 13, 17, 19, 23, 31, 37, 41, 43, 53, 59, 61, 67, 71, 73, 79, 89, 97, 103, 107, 109, 113, 131, 139, 151, 157, 163, 167, 179, 181, 193, 197, 199, 211, 223, 229, 233, 239, 241, 251, 257, 269, 271, 283, 293, 307, 311, 313, 331, 337, 347, 349, 359, 367, 373
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite and its relative density in the sequence of the primes is equal to 2 * Product_{p prime} (1-1/(p*(p-1))) = 2 * A005596 = 0.747911... (Mirsky, 1949). - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[100]],SquareFreeQ[#-2]&] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    isok(p) = isprime(p) && issquarefree(p-2); \\ Michel Marcus, Dec 31 2013

Formula

Primes p such that abs(mu(p-2)) = 1.

Extensions

Definition corrected by Michel Marcus, Dec 31 2013
Previous Showing 41-50 of 99 results. Next