cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 99 results. Next

A007355 Incorrect duplicate of A297408.

Original entry on oeis.org

2, 13, 19, 6173, 6299, 6353, 6389, 16057, 16369, 16427, 16883, 17167, 17203, 17257, 18169, 18517, 18899, 20353, 20369, 20593, 20639, 20693, 20809, 22037, 22109, 22153
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A019353 Primes with primitive root 27.

Original entry on oeis.org

2, 5, 17, 29, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, 521, 557, 569, 593, 617, 641, 653, 677, 701, 773, 797, 809, 821, 857, 881, 929, 941, 953, 977, 1013, 1049, 1061, 1097, 1109, 1193, 1217, 1229, 1277, 1301
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, May 12 2024: (Start)
Members of A019334 that are not congruent to 1 mod 3. Terms greater than 2 are congruent to 5 modulo 12.
According to Artin's conjecture, the number of terms <= N is roughly ((3/5)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N). (End)

Crossrefs

Programs

  • Mathematica
    pr=27; Select[Prime[Range[300]], MultiplicativeOrder[pr, # ] == #-1 &]
  • PARI
    isA019353(n) = isprime(n) && (n!=3) && znorder(Mod(27,n)) == n-1 \\ Jianing Song, May 12 2024

A049229 Primes p such that p-2 is not squarefree.

Original entry on oeis.org

11, 29, 47, 83, 101, 127, 137, 149, 173, 191, 227, 263, 277, 281, 317, 353, 389, 443, 461, 479, 509, 541, 569, 577, 587, 607, 641, 659, 677, 727, 821, 827, 839, 857, 877, 911, 929, 947, 977, 983, 1019, 1031, 1091, 1109, 1129, 1163, 1181, 1217, 1277, 1289
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite and its relative density in the sequence of the primes is equal to 1 - 2 * Product_{p prime} (1-1/(p*(p-1))) = 1 - 2 * A005596 = 0.252088... - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,300]],!SquareFreeQ[#-2]&] (* Harvey P. Dale, Nov 14 2012 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && !issquarefree(p-2); \\ Michel Marcus, May 14 2018

A091880 A049232 indexed by A000040.

Original entry on oeis.org

1, 4, 9, 14, 15, 18, 21, 22, 25, 36, 39, 40, 48, 53, 59, 65, 67, 70, 72, 73, 74, 82, 85, 88, 99, 101, 110, 114, 122, 125, 127, 129, 130, 137, 143, 146, 147, 155, 158, 168, 174, 177, 180, 181, 188, 194, 198, 200, 202, 204, 213, 216, 219, 220, 224, 226, 229, 235
Offset: 1

Views

Author

Ray Chandler, Feb 15 2004

Keywords

Comments

The asymptotic density of this sequence is 1 - 2 * Product_{p prime} (1-1/(p*(p-1))) = 1 - 2 * A005596 = 0.252088... - Amiram Eldar, Feb 28 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[100], ! SquareFreeQ[Prime[ # ] + 2] &] (* Zak Seidov, Oct 28 2008 *)

Formula

a(n) = k such that A000040(k) = A049232(n).

A103362 Reduced numerators of the fraction of primes < 10^n that are full reptend primes.

Original entry on oeis.org

1, 9, 5, 467, 3617, 14750, 248881, 2155288, 19016617, 170169241
Offset: 1

Views

Author

Eric W. Weisstein, Feb 02 2005

Keywords

Comments

A103362/A103363 is conjectured to approach Artin's constant A005596.

Examples

			1/4, 9/25, 5/14, 467/1229, 3617/9592, 14750/39249, ...
		

Crossrefs

Formula

Numerator(A086018/A006880).

A103363 Reduced denominators of the fraction of primes < 10^n that are full reptend primes.

Original entry on oeis.org

4, 25, 14, 1229, 9592, 39249, 664579, 5761455, 50847534, 455052511
Offset: 1

Views

Author

Eric W. Weisstein, Feb 02 2005

Keywords

Comments

A103362/A103363 is conjectured to approach Artin's constant A005596.

Examples

			1/4, 9/25, 5/14, 467/1229, 3617/9592, 14750/39249, ...
		

Crossrefs

Formula

Denominator[A086018/A006880]

A271798 Decimal expansion of Matthews' constant C_2, an analog of Artin's constant for primitive roots.

Original entry on oeis.org

1, 4, 7, 3, 4, 9, 4, 0, 0, 0, 0, 2, 0, 0, 1, 4, 5, 8, 0, 7, 6, 8, 0, 8, 4, 3, 1, 8, 4, 7, 6, 9, 2, 5, 9, 6, 3, 9, 6, 6, 7, 1, 8, 5, 8, 1, 7, 3, 2, 7, 2, 1, 5, 8, 4, 4, 2, 0, 7, 9, 6, 1, 9, 2, 8, 5, 5, 5, 8, 3, 5, 3, 4, 0, 9, 8, 5, 5, 0, 3, 5, 5, 9, 8, 0, 7, 8, 2, 7, 1, 1, 3, 0, 1, 7, 6, 6, 1, 8, 9, 9, 4, 4, 3, 3, 6
Offset: 0

Views

Author

Jean-François Alcover, Apr 14 2016

Keywords

Examples

			0.147349400002001458076808431847692596396671858173272158442...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.4 Artin's constant, p. 105.

Crossrefs

Cf. A005596.

Programs

  • Mathematica
    digits = 66; m0 = 1000; dm = 100; Clear[s]; r[n_] := RootSum[1 - 2*# - #^2 + #^3& , #^n&] - 1; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 2, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m - dm], 10, digits][[1]], Print[m]; m = m + dm]; RealDigits[s[m]][[1]]
  • PARI
    prodeulerrat(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) \\ Amiram Eldar, Mar 16 2021

Formula

C_2 = Product_{p prime} 1 - (p^2 - (p - 1)^2)/(p^2*(p - 1)).
Log(1 - (p^2 - (p - 1)^2)/(p^2*(p - 1))) + O(p,Infinity)^m = Sum_{n=2..m} -r(n)/(n*p^n), where r(n) = rootSum(1 - 2*x - x^2 + x^3, x^n) - 1.

Extensions

More digits from Vaclav Kotesovec, Jun 19 2020

A321217 Genocchi irregular primes.

Original entry on oeis.org

17, 31, 37, 41, 43, 59, 67, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 149, 151, 157, 193, 223, 229, 233, 241, 251, 257, 263, 271, 277, 281, 283, 293, 307, 311, 313, 331, 337, 347, 353, 379, 389, 397, 401, 409, 421, 431, 433, 439, 449, 457, 461, 463, 467, 491, 499
Offset: 1

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Comments

An odd prime p is G-irregular if it divides at least one of the integers G2, G4, ..., G(p-3).
Conjecture (Hu et al., 2019): The asymptotic density of this sequence within the primes is 1 - 3*A/(2*sqrt(e)) = 0.659776..., where A is Artin's constant (A005596). - Amiram Eldar, Dec 06 2022

Crossrefs

Cf. A036968 (Genocchi numbers), A000928 (irregular primes), A120337 (Euler-irregular primes), A128197 (strong irregular primes), A250216 (weak irregular primes), A005596.

Programs

  • Maple
    A321217_list := proc(bound)
       local ae, F, p, m, maxp; F := NULL;
       for m from 2 by 2 to bound do
          p := nextprime(m+1);
          ae := abs(m*euler(m-1, 0));
          maxp := min(ae, bound);
          while p <= maxp do
              if ae mod p = 0 then F := F, p fi;
              p := nextprime(p)
          od
       od;
    sort({F}) end: A321217_list(500); # Peter Luschny, Nov 11 2018
  • Mathematica
    G[n_] := G[n] = n EulerE[n - 1, 0];
    GenocchiIrregularQ[p_] := AnyTrue[Table[G[k], {k, 2, p-3, 2}], Divisible[#, p]&];
    Select[Prime[Range[2, 100]], GenocchiIrregularQ] (* Jean-François Alcover, Nov 16 2018 *)

Extensions

More terms from Peter Luschny, Nov 11 2018

A003969 Inverse Möbius transform of A003959.

Original entry on oeis.org

1, 4, 5, 13, 7, 20, 9, 40, 21, 28, 13, 65, 15, 36, 35, 121, 19, 84, 21, 91, 45, 52, 25, 200, 43, 60, 85, 117, 31, 140, 33, 364, 65, 76, 63, 273, 39, 84, 75, 280, 43, 180, 45, 169, 147, 100, 49, 605, 73, 172, 95, 195, 55, 340, 91, 360, 105, 124, 61, 455, 63, 132, 189
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p + 1)^(e + 1) - 1)/p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i,1] + 1)^(f[i,2] + 1) - 1)/f[i,1]); } \\ Amiram Eldar, Oct 23 2022

Formula

Multiplicative with a(p^e) = ((p+1)^(e+1)-1)/p. - David W. Wilson, Sep 01 2001
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691/A005596 = 2.199369... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from David W. Wilson, Aug 29 2001

A105887 Primes for which -15 is a primitive root.

Original entry on oeis.org

2, 11, 13, 29, 37, 41, 43, 59, 71, 73, 89, 97, 101, 103, 127, 131, 149, 157, 163, 179, 191, 193, 239, 251, 269, 281, 307, 313, 337, 359, 373, 389, 401, 419, 431, 433, 449, 457, 461, 479, 487, 491, 509, 521, 523, 547, 569, 577, 599, 607, 613, 641, 701, 719, 727, 733, 757
Offset: 1

Views

Author

N. J. A. Sloane, Apr 24 2005

Keywords

Comments

From Jianing Song, Jan 27 2019: (Start)
All terms except the first are congruent to 7, 11, 13 or 14 modulo 15. If we define
Pi(N,b) = # {p prime, p <= N, p == b (mod 15)};
Q(N) = # {p prime, 2 < p <= N, p in this sequence},
then by Artin's conjecture, Q(N) ~ (94/95)*C*N/log(N) ~ (188/95)*C*(Pi(N,7) + Pi(N,11) + Pi(N,13) + Pi(N,14)), where C = A005596 is Artin's constant.
Conjecture: if we further define
Q(N,b) = # {p prime, p <= N, p == b (mod 15), p in this sequence},
then we have:
Q(N,7) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,7);
Q(N,11) ~ (12/47)*Q(N) ~ ( 96/95)*C*Pi(N,11);
Q(N,13) ~ (10/47)*Q(N) ~ ( 80/95)*C*Pi(N,13);
Q(N,14) ~ (15/47)*Q(N) ~ (120/95)*C*Pi(N,14).
Numeric verification up tp N = 10^8:
| Q(N,7) | Q(N,11) | Q(N,13) | Q(N,14) | Q(N)
-------------+---------+---------+---------+---------+---------
N = 10^3 | 14 | 18 | 13 | 19 | 64
Q(N,*)/Q(N) | 0.21875 | 0.28125 | 0.20313 | 0.29688 | 1.00000
-------------+---------+---------+---------+---------+---------
N = 10^4 | 97 | 115 | 90 | 138 | 440
Q(N,*)/Q(N) | 0.22045 | 0.26136 | 0.20455 | 0.31364 | 1.00000
-------------+---------+---------+---------+---------+---------
N = 10^5 | 753 | 891 | 750 | 1129 | 3523
Q(N,*)/Q(N) | 0.21374 | 0.25291 | 0.21289 | 0.32047 | 1.00000
-------------+---------+---------+---------+---------+---------
N = 10^6 | 6153 | 7395 | 6176 | 9247 | 28971
Q(N,*)/Q(N) | 0.21238 | 0.25526 | 0.21318 | 0.31918 | 1.00000
-------------+---------+---------+---------+---------+---------
N = 10^7 | 52427 | 62973 | 52368 | 78398 | 246166
Q(N,*)/Q(N) | 0.21297 | 0.25582 | 0.21273 | 0.31848 | 1.00000
-------------+---------+---------+---------+---------+---------
N = 10^8 | 453936 | 544551 | 453699 | 680226 | 2132412
Q(N,*)/Q(N) | 0.21287 | 0.25537 | 0.21276 | 0.31899 | 1.00000
-------------+---------+---------+---------+---------+---------
Conjectured | 0.21277 | 0.25532 | 0.21277 | 0.31915 | 1.00000
(End)

Crossrefs

Cf. A005596 (Artin's constant).

Programs

  • Mathematica
    pr=-15; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
Previous Showing 71-80 of 99 results. Next