cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A001434 Number of graphs with n nodes and n edges.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 21, 65, 221, 771, 2769, 10250, 39243, 154658, 628635, 2632420, 11353457, 50411413, 230341716, 1082481189, 5228952960, 25945377057, 132140242356, 690238318754, 3694876952577, 20252697246580, 113578669178222, 651178533855913, 3813856010041981
Offset: 0

Views

Author

Keywords

Comments

The labeled version is A116508. - Gus Wiseman, Feb 22 2024

Examples

			From _Gus Wiseman_, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,24}
                                       {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A001429, labeled A057500.
The covering case is A006649, labeled A367863.
Diagonal n = k of A008406.
The labeled version is A116508.
The version with loops is A368598, connected A368983.
Allowing up to n edges gives A370315, labeled A369192.
A000088 counts unlabeled graphs, labeled A006125.
A001349 counts unlabeled connected graphs, labeled A001187.
A002494 counts unlabeled covering graphs, labeled A006129.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{2}],{n}]]],{n,0,5}] (* Gus Wiseman, Feb 22 2024 *)
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024

Extensions

More terms from Vladeta Jovovic, Jan 07 2000
a(0)=1 prepended by Andrew Howroyd, Feb 02 2024

A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 22, 616, 26084, 1885323, 253923163, 66619551326, 34575180977552, 35680008747431929, 73392583275070667841, 301348381377662031986734, 2471956814761854578316988092, 40530184362443276558060719358471, 1328619783326799871747200601484790193
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs covering n vertices with at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

The version for a unique choice is A000272, unlabeled A000055.
Without the choice condition we have A006125, unlabeled A000088.
The case without loops is A367868, covering case of A367867.
For exactly n edges we have A368730, covering case of A368596.
The complement is counted by A369140, covering case of A368927.
This is the covering case of A369141.
For n edges and no loops we have A369144, covering A369143.
The unlabeled version is A369147, covering case of A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable graphs, unlabeled A005703.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, connected A062740, unlabeled A322700.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Inverse binomial transform of A369141.
a(n) = A322661(n) - A369140(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369191 Number of labeled simple graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5686, 102084, 2162168, 52693975, 1450876804, 44509105965, 1504709144203, 55563209785167, 2224667253972242, 95984473918245388, 4439157388017620554, 219067678811211857307, 11489425098298623161164, 638159082104453330569185
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A054548.

Examples

			The a(0) = 1 through a(3) = 4 graphs:
  {}  .  {{1,2}}  {{1,2},{1,3}}
                  {{1,2},{2,3}}
                  {{1,3},{2,3}}
                  {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A053530.
The connected case is A129271, unlabeled version A005703.
The case of equality is A367863, covering case of A367862.
This is the covering case of A369192, or A369193 for covered vertices.
The version for loop-graphs is A369194.
The unlabeled version is A370316.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A057500 counts connected graphs with n vertices and n edges.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369193.

A369192 Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).

Original entry on oeis.org

1, 1, 2, 8, 57, 638, 9949, 198440, 4791323, 135142796, 4346814276, 156713948672, 6251579884084, 273172369790743, 12969420360339724, 664551587744173992, 36543412829258260135, 2146170890448154922648, 134053014635659737513358, 8872652968135849629240560
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Examples

			The a(0) = 1 through a(3) = 8 graphs:
  {}  {}  {}       {}
          {{1,2}}  {{1,2}}
                   {{1,3}}
                   {{2,3}}
                   {{1,2},{1,3}}
                   {{1,2},{2,3}}
                   {{1,3},{2,3}}
                   {{1,2},{1,3},{2,3}}
		

Crossrefs

The version for loop-graphs is A066383, covering A369194.
The case of equality is A116508, covering A367863, also A367862.
The connected case is A129271, unlabeled A005703.
The covering case is A369191, minimal case A053530.
Counting only covered vertices gives A369193.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]
  • Python
    from math import comb
    def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 14 2024

Formula

a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).

A369146 Number of unlabeled loop-graphs with up to n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 8, 60, 471, 4911, 78797, 2207405, 113740613, 10926218807, 1956363413115, 652335084532025, 405402273420833338, 470568642161119515627, 1023063423471189429817807, 4178849203082023236054797465, 32168008290073542372004072630072, 468053896898117580623237189882068990
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 8 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{1,2}}
                         {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A000666, labeled A006125 (shifted).
For a unique choice we have A087803, labeled A088957.
The case without loops is A140637, labeled A367867 (covering A367868).
For exactly n edges we have A368835, labeled A368596.
The labeled complement is A368927, covering A369140.
The labeled version is A369141, covering A369142.
The complement is counted by A369145, covering A369200.
The covering case is A369147.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Select[Tuples[#],UnsameQ@@#&]=={}&]]],{n,0,4}]

Formula

Partial sums of A369147.
a(n) = A000666(n) - A369145(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A369145 Number of unlabeled loop-graphs with up to n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 2, 5, 12, 30, 73, 185, 467, 1207, 3147, 8329, 22245, 60071, 163462, 448277, 1236913, 3432327, 9569352, 26792706, 75288346, 212249873, 600069431, 1700826842, 4831722294, 13754016792, 39224295915, 112048279650, 320563736148, 918388655873, 2634460759783, 7566000947867
Offset: 0

Views

Author

Gus Wiseman, Jan 22 2024

Keywords

Comments

a(n) is the number of graphs with loops on n unlabeled vertices with every connected component having no more edges than vertices. - Andrew Howroyd, Feb 02 2024

Examples

			The a(0) = 1 through a(3) = 12 loop-graphs (loops shown as singletons):
  {}  {}     {}           {}
      {{1}}  {{1}}        {{1}}
             {{1,2}}      {{1,2}}
             {{1},{2}}    {{1},{2}}
             {{1},{1,2}}  {{1},{1,2}}
                          {{1},{2,3}}
                          {{1,2},{1,3}}
                          {{1},{2},{3}}
                          {{1},{2},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we get A000666, labeled A006125 (shifted left).
The case of a unique choice is A087803, labeled A088957.
Without loops we have A134964, labeled A133686 (covering A367869).
For exactly n edges and no loops we have A137917, labeled A137916.
The labeled version is A368927, covering A369140.
The labeled complement is A369141, covering A369142.
For exactly n edges we have A368984, labeled A333331 (maybe).
The complement for exactly n edges is A368835, labeled A368596.
The complement is counted by A369146, labeled A369141 (covering A369142).
The covering case is A369200.
The complement for exactly n edges and no loops is A369201, labeled A369143.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A322661 counts labeled covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable labeled graphs, covering A367868.
A368927 counts choosable labeled loop-graphs, covering A369140.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

Partial sums of A369200.
Euler transform of A369289. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A370169 Number of unlabeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 3, 7, 19, 48, 135, 373, 1085, 3184, 9590, 29258, 90833, 285352, 908006, 2919953, 9487330, 31111997, 102934602, 343389708, 1154684849, 3912345408, 13353796977, 45906197103, 158915480378, 553897148543, 1943627750652, 6865605601382, 24411508473314, 87364180212671, 314682145679491
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2024

Keywords

Examples

			The a(0) = 1 through a(4) = 19 loop-graph edge sets (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
             {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
             {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                          {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                          {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                          {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                          {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                               {{1},{2},{3},{1,4}}
                                               {{1},{2},{1,2},{3,4}}
                                               {{1},{2},{1,3},{1,4}}
                                               {{1},{2},{1,3},{2,4}}
                                               {{1},{2},{1,3},{3,4}}
                                               {{1},{1,2},{1,3},{1,4}}
                                               {{1},{1,2},{1,3},{2,4}}
                                               {{1},{1,2},{2,3},{2,4}}
                                               {{1},{1,2},{2,3},{3,4}}
                                               {{1},{2,3},{2,4},{3,4}}
                                               {{1,2},{1,3},{1,4},{2,3}}
                                               {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The case of equality is A368599, covering case of A368598.
The labeled version is A369194, covering case of A066383.
This is the covering case of A370168.
The loopless version is the covering case of A370315, labeled A369192.
This is the loopless version is A370316, labeled A369191.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[#]<=n&]]],{n,0,5}]
  • PARI
    \\ G defined in A070166.
    a(n)=my(A=O(x*x^n)); if(n==0, 1, polcoef((G(n,A)-G(n-1,A))/(1-x), n)) \\ Andrew Howroyd, Feb 19 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 19 2024

A140636 Number of connected graphs on n unlabeled nodes that contain at least two cycles.

Original entry on oeis.org

0, 0, 0, 2, 13, 93, 809, 11005, 260793, 11715808, 1006698524, 164059824899, 50335907853919, 29003487462805642, 31397381142761123838, 63969560113225175845492, 245871831682084026518599099, 1787331725248899088890197955308, 24636021429399867655322650752269938
Offset: 1

Views

Author

Washington Bomfim, May 20 2008

Keywords

Comments

Original name: number of unlabeled complex components with n nodes.
We can find in "The Birth of the Giant Component", p. 2, see the first link:
"As each of the random graphs evolved, the story went, never once was there more than a single 'complex' component; i.e. there never were two or more components present simultaneously that were neither trees nor unicyclic."
So a complex component is a connected graph that is neither a tree nor an unicyclic graph.

Examples

			a(4) = 2. See the two complex components with 4 nodes in the Sloane illustration.
		

Crossrefs

The labeled version is A140638.

Formula

a(n) = A001349(n) - A005703(n).
a(n) = A001349(n) - A000055(n) - A001429(n).

Extensions

Name changed by Andrew Howroyd, Jan 16 2022

A368410 Number of non-isomorphic connected set-systems of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 15, 32, 80, 198, 528
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 set-systems:
  {1}  {12}  {123}    {1234}    {12345}      {123456}
             {2}{12}  {13}{23}  {14}{234}    {125}{345}
                      {3}{123}  {23}{123}    {134}{234}
                                {4}{1234}    {15}{2345}
                                {2}{13}{23}  {34}{1234}
                                {2}{3}{123}  {5}{12345}
                                {3}{13}{23}  {1}{14}{234}
                                             {12}{13}{23}
                                             {1}{23}{123}
                                             {13}{24}{34}
                                             {14}{24}{34}
                                             {3}{14}{234}
                                             {3}{23}{123}
                                             {3}{4}{1234}
                                             {4}{14}{234}
		

Crossrefs

For unlabeled graphs we have A005703, connected case of A134964.
For labeled graphs we have A129271, connected case of A133686.
The complement for labeled graphs is A140638, connected case of A367867.
The complement without connectedness is A367903, ranks A367907.
Without connectedness we have A368095, ranks A367906,
Complement with repeats: A368097, connected case of A368411, ranks A355529.
The complement is counted by A368409, connected case of A368094.
With repeats allowed: A368412, connected case of A368098, ranks A368100.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]!={}&]]],{n,0,6}]

A369147 Number of unlabeled loop-graphs covering n vertices such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 7, 52, 411, 4440, 73886, 2128608, 111533208, 10812478194, 1945437194308, 650378721118910, 404749938336301313, 470163239887698682289, 1022592854829028310302180, 4177826139658552046624979658, 32163829440870460348768017832607, 468021728889827507080865185809438918
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Examples

			The a(0) = 0 through a(3) = 7 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
The complement for exactly n edges is A368984, labeled A333331 (maybe).
The labeled complement is A369140, covering case of A368927.
The labeled version is A369142, covering case of A369141.
This is the covering case of A369146.
The complement is counted by A369200, covering case of A369145.
Without loops we have A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A002494 counts unlabeled covering graphs, labeled A006129.
A007716 counts non-isomorphic multiset partitions, connected A007718.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]==0&]]],{n,0,4}]

Formula

First differences of A369146.
a(n) = A322700(n) - A369200(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024
Previous Showing 11-20 of 33 results. Next