A268538
a(n) is the n-th prime 3-dimensional Catalan number.
Original entry on oeis.org
1, 1, 2, 12, 107, 1178, 14805, 203885, 3002973, 46573347, 752521980, 12571607865, 215925120675, 3796546970232, 68106673339365, 1243210765414512, 23041656826384341
Offset: 0
-
A005789 := proc(n)
2*(3*n)!/(n+2)!/(n+1)!/n! ;
end proc:
maxn := 30 :
Cx := add(A005789(i)*x^i,i=0..maxn) ;
d := 3:
for i from 0 to maxn do
coeftayl(1/Cx^(d*i-1),x=0,i) ;
%/(1-d*i) ;
printf("%d,",%) ;
end do: # R. J. Mathar, Feb 27 2018
-
A005789[n_] := 2*(3*n)!/(n+2)!/(n+1)!/n!; Maxn = 30; Cx = Sum[A005789[i]* x^i, {i, 0, Maxn}]; d = 3; Reap[For[i = 0, i <= Maxn, i++, sc = SeriesCoefficient[1/Cx^(d*i-1), {x, 0, i}]; Sow[sc/(1-d*i)]]][[2, 1]] (* Jean-François Alcover, Mar 24 2018, after R. J. Mathar *)
A321716
Triangle read by rows: T(n,k) is the number of n X k Young tableaux, where 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 5, 42, 1, 1, 14, 462, 24024, 1, 1, 42, 6006, 1662804, 701149020, 1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960, 1, 1, 429, 1385670, 13672405890, 278607172289160, 9490348077234178440, 475073684264389879228560
Offset: 0
T(4,3) = 12! / ((6*5*4)*(5*4*3)*(4*3*2)*(3*2*1)) = 462.
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 5, 42;
1, 1, 14, 462, 24024;
1, 1, 42, 6006, 1662804, 701149020;
1, 1, 132, 87516, 140229804, 396499770810, 1671643033734960;
-
A321716:= func< n,k | n eq 0 select 1 else Factorial(n*k)/(&*[ Round(Gamma(j+k)/Gamma(j)): j in [1..n]]) >;
[A321716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 04 2021
-
T[n_, k_]:= (n*k)!/Product[Product[i+j-1, {j,1,k}], {i,1,n}]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 17 2018 *)
T[n_, k_]:= (n*k)!*BarnesG[n+1]*BarnesG[k+1]/BarnesG[n+k+1];
Table[T[n, k], {n, 0, 5}, {k, 0, n}] //Flatten (* G. C. Greubel, May 04 2021 *)
-
def A321716(n,k): return factorial(n*k)/product( gamma(j+k)/gamma(j) for j in (1..n) )
flatten([[A321716(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 04 2021
A321978
9-dimensional Catalan numbers.
Original entry on oeis.org
1, 1, 4862, 414315330, 177295473274920, 219738059326729823880, 583692803893929928888544400, 2760171874087743799855959353857200, 20535535214275361308250745082811167425600, 220381378415074546123953914908618547085974856000
Offset: 0
-
List([0..10],n->5056584744960000*Factorial(9*n)/Product([0..8],k->Factorial(n+k))); # Muniru A Asiru, Nov 25 2018
-
[5056584744960000*Factorial(9*n)/(Factorial(n)*Factorial(n + 1)*Factorial(n + 2)*Factorial(n + 3)*Factorial(n + 4)*Factorial(n + 5)*Factorial(n + 6)*Factorial(n + 7)*Factorial(n + 8)): n in [0..15]]; // Vincenzo Librandi, Nov 24 2018
-
Table[5056584744960000 (9 n)! / (n! (n + 1)! (n + 2)! (n + 3)! (n + 4)! (n + 5)! (n + 6)! (n + 7)! (n + 8)!), {n, 0, 15}] (* Vincenzo Librandi, Nov 24 2018 *)
A361190
Number of 4n-step lattice paths starting and ending at (0,0) that do not go above the diagonal x=y or below the x-axis using steps in {(1,1), (1,-1), (-1,0)}.
Original entry on oeis.org
1, 1, 9, 153, 3579, 101630, 3288871, 116951012, 4465824585, 180310624841, 7614208325878, 333613510494834, 15075162152856423, 699290488810583617, 33176816563410874752, 1605135467691243954419, 79003021319962788395355, 3947913343912428255683930
Offset: 0
a(0) = 1: (00), 0 steps are made.
a(1) = 1: (00)(11)(20)(10)(00).
a(2) = 9:
(00)(11)(20)(10)(00)(11)(20)(10)(00),
(00)(11)(20)(10)(21)(30)(20)(10)(00),
(00)(11)(20)(10)(21)(11)(20)(10)(00),
(00)(11)(20)(31)(40)(30)(20)(10)(00),
(00)(11)(20)(31)(21)(30)(20)(10)(00),
(00)(11)(20)(31)(21)(11)(20)(10)(00),
(00)(11)(22)(31)(40)(30)(20)(10)(00),
(00)(11)(22)(31)(21)(30)(20)(10)(00),
(00)(11)(22)(31)(21)(11)(20)(10)(00).
-
b:= proc(n, x, y) option remember; `if`(x+2*y>n, 0,
`if`(n=0, 1, `if`(y>0, b(n-1, x+1, y-1), 0)+
`if`(y b(4*n, 0$2):
seq(a(n), n=0..17);
A065077
Triangle read by rows: T(n,m) = C[n,m,m] where C[i,j,k] is the 3-dimensional Catalan pyramid defined by C[0,0,0]=1 and C[i,j,k]=0 if j>i or k>j and C[i,j,k]=C[i-1,j,k]+C[i,j-1,k]+C[i,j,k-1].
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 1, 6, 21, 42, 1, 10, 56, 210, 462, 1, 15, 120, 660, 2574, 6006, 1, 21, 225, 1650, 9009, 36036, 87516, 1, 28, 385, 3575, 25025, 136136, 554268, 1385670, 1, 36, 616, 7007, 60060, 408408, 2217072, 9145422, 23371634, 1, 45, 936, 12740, 129948
Offset: 0
1;
1,1;
1,3,5;
1,6,21,42;
1,10,56,210,462;
1,15,120,660,2574,6006;
...
T(2,1)=3 because in the first row of the diagram (2,1,1) we can have 12 or 13 or 14.
-
a:=proc(n,m) if m<=n then (n+2*m)!*(n-m+1)*(n-m+2)/m!/(m+1)!/(n+2)! else 0 fi end: seq(seq(a(n,m),m=0..n),n=0..9);
A087727
Triangle read by rows: T(n,k) = (2 * (binomial(n,k)) * (n + 2 * k + 3)!)/((k + 1)! * (k + 2)! * (n + 3)!).
Original entry on oeis.org
1, 1, 5, 1, 14, 42, 1, 28, 210, 462, 1, 48, 660, 3432, 6006, 1, 75, 1650, 15015, 60060, 87516, 1, 110, 3575, 50050, 340340, 1108536, 1385670, 1, 154, 7007, 140140, 1429428, 7759752, 21339318, 23371634, 1, 208, 12740, 346528, 4938024, 39504192, 178474296, 424938800, 414315330
Offset: 0
Triangle begins:
1;
1, 5;
1, 14, 42;
1, 28, 210, 462;
...
-
t(n, k) = (2 * (binomial(n,k)) * (n + 2*k + 3)!)/((k + 1)! * (k + 2)! * (n + 3)!) \\ Michel Marcus, Jun 26 2013
A123691
a(n) = number of standard Young tableaux of type (n,n-1,n-1).
Original entry on oeis.org
1, 3, 21, 210, 2574, 36036, 554268, 9145422, 159352050, 2900207310, 54698315490, 1062710129520, 21172455657360, 431010704453400, 8939669081780520, 188478023140872630, 4031562420682009290, 87350519114776867950, 1914486941500560677250, 42397183540866961907100
Offset: 1
-
a:= n-> 6 *(3*n-2)! / (n! *(n-1)! *(n+2)!):
seq(a(n), n=1..25); # Alois P. Heinz, Apr 11 2012
-
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Table[ NumberOfTableaux@{n, n - 1, n - 1}, {n, 18}]
A364439
a(n) is the number of paths with length 3*n that begin at (0,0), end at (0,0), and do not reach (0,0) at any point in between while 0 <= y <= x at every step, where a path is a sequence of steps in the form (1,1), (1,-1), and (-2,0).
Original entry on oeis.org
1, 1, 4, 33, 367, 4844, 71597, 1147653, 19559062, 349766457, 6502419671, 124822220086, 2461515013103, 49668479230825, 1022258042480874, 21406231023989503, 455112508356168561, 9807294681518154334, 213897254891041613995, 4715809234441541498539
Offset: 0
Let A represent the (1,1) step, B represent the (1,-1) step, and C represent the (-2,0) step.
For n = 1, the only valid path is ABC.
For n = 2, the 4 valid paths are AABBCC, AABCBC, ABABCC, ABACBC.
-
/* See Hamon Link */
-
b:= proc(n, l) option remember; `if`(n<1, 1, add((h->
`if`(h[2]>h[1] or h[1]>=n or min(h)<0 or n>1 and h=[0$2],
0, b(n-1, h)))(l-w), w=[[1, 1], [1, -1], [-2, 0]]))
end:
a:= n-> b(3*n-1, [2, 0]):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 28 2023
# second Maple program:
f:= proc(n) option remember; (3*n)!*mul(i!/(n+i)!, i=0..2) end:
a:= proc(n) option remember; `if`(n=0, 1,
f(n)-add(f(n-i)*a(i), i=1..n-1))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 29 2023
-
f[n_] := f[n] = (3n)!*Product[i!/(n+i)!, {i, 0, 2}];
a[n_] := a[n] = If[n == 0, 1, f[n] - Sum[f[n-i]*a[i], {i, 1, n-1}]];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 27 2023, after Alois P. Heinz *)
A134236
Ternary numbers with equal numbers of 0's, 1's and 2's and such that read left-to-right at all times the number of 2's >= number of 1's >= number of 0's.
Original entry on oeis.org
210, 210210, 212010, 212100, 221010, 221100, 210210210, 210212010, 210212100, 210221010, 210221100, 212010210, 212012010, 212012100, 212021010, 212021100, 212100210, 212102010, 212102100, 212120010, 212120100, 212121000, 212201010
Offset: 1
A338368
Triangle of number of 312-avoiding reduced valid hook configurations with n hooks that are on permutations with 2n + k points, for n=1 and 1<=k<=n.
Original entry on oeis.org
1, 3, 5, 14, 51, 42, 84, 485, 849, 462, 594, 4743, 13004, 14819, 6006, 4719, 48309, 182311, 322789, 271452, 87516, 40898, 511607, 2472322, 5999489, 7794646, 5182011, 13856
Offset: 1
Triangle begins
1
3 5
14 51 42
84 485 849 462
594 4743 13004 14819 6006
4719 48309 182311 322789 271452 87516
40898 511607 2472322 5999489 7794646 5182011 13856
Comments