cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A274257 Number of factor-free Dyck words with slope 4/3 and length 7n.

Original entry on oeis.org

1, 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, 157387037696, 4195621863424, 113534211297280, 3110485641494528, 86107512380129280, 2404899661362184192, 67680890349732102144, 1917436905101367443456, 54640222663002565640192, 1565130555077611323392000, 45039415225401829826232320
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,4n) that stay below the line y=4/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper subpath of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN.
		

Crossrefs

Cf. A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274258 (slope 5/3), A274259 (slope 7/3).

Programs

  • Mathematica
    m = 20; f[_] = 0;
    Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}];
    CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *)

Formula

G.f. satisfies: 0 = x*f^6 + x*(x-1)*f^5 - x^2*(x+1)*f^4 - x*(x-3)*(x+1)^2*f^3 + x*(x+1)^3*f^2 - (x+1)^4*f + (x+1)^5. - Michael D. Weiner, Jan 14 2019
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 5*x + 52*x^2 + 880*x^3 + .... Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020

A274259 Number of factor-free Dyck words with slope 7/3 and length 10n.

Original entry on oeis.org

1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,7n) that stay below the line y=7/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper subpath of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274258 (slope 5/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(10*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/10) = 1 + 12*x + 570*x^2 + 44689*x^3 + ... . Equivalently, [x^n]( A(x)^(10*n) ) = binomial(10*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 03 2020

A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 51, 36, 26, 19, 14, 188, 137, 101, 75, 56, 42, 731, 543, 406, 305, 230, 174, 132, 2950, 2219, 1676, 1270, 965, 735, 561, 429, 12235, 9285, 7066, 5390, 4120, 3155, 2420, 1859, 1430, 51822, 39587, 30302, 23236, 17846, 13726, 10571, 8151, 6292, 4862
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - Wolfdieter Lang, Oct 04 2019

Examples

			From _Wolfdieter Lang_, Oct 04 2019: (Start)
The triangle T(n, k) begins:
n\k      0      1      2      3     4     5     6     7     8     9    10 ...
0:       1
1:       2      1
2:       5      3      2
3:      15     10      7      5
4:      51     36     26     19    14
5:     188    137    101     75    56    42
6:     731    543    406    305   230   174   132
7:    2950   2219   1676   1270   965   735   561   429
8:   12235   9285   7066   5390  4120  3155  2420  1859  1430
9:   51822  39587  30302  23236 17846 13726 10571  8151  6292  4862
10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
... reformatted and extended.
-------------------------------------------------------------------------
The array A(n, k) begins:
n\k  0   1    2    3     4     5      6 ...
-------------------------------------------
0:   1   1    2    5    14    42    132 ... A000108
1    2   3    7   19    56   174    561 ... A005807
2:   5  10   26   75   230   735   2420 ...
3:  15  36  101  305   965  3155  10571 ...
4:  51 137  406 1270  4120 13726  46672 ...
5: 188 543 1676 5390 17846 60398 207963 ...
... (End)
		

Crossrefs

Columns: A007317, A002212, see also A045868, A055452-A055455.
Diagonals: A000108, A005807.
Cf. A059346 (Catalan difference array as triangle).

Programs

  • Magma
    function T(n,k)
      if k gt n then return 0;
      elif k eq n then return Catalan(n);
      else return T(n-1, k) + T(n, k+1);
      end if; return T;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 18 2021
  • Maple
    # Uses floating point, precision might have to be adjusted.
    C := n -> binomial(2*n,n)/(n+1);
    H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4);
    T := (n,k) -> C(k)*H(n,k);
    seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7);
    # Peter Luschny, Aug 16 2012
  • Mathematica
    T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 11 2019 *)
  • Sage
    def T(n, k) :
        if k > n : return 0
        if n == k : return binomial(2*n, n)/(n+1)
        return T(n-1, k) + T(n, k+1)
    A106534 = lambda n,k: T(n, k)
    for n in (0..5): [A106534(n,k) for k in (0..n)] # Peter Luschny, Aug 16 2012
    

Formula

T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n.
T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - Peter Luschny, Aug 16 2012
T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - Wolfdieter Lang, Oct 03 2019
G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - Vladimir Kruchinin, Jan 12 2024

A274258 Number of factor-free Dyck words with slope 5/3 and length 8n.

Original entry on oeis.org

1, 7, 133, 4140, 154938, 6398717, 281086555, 12882897819, 609038885805, 29481041746958, 1453894927584477, 72789271870852237, 3689808842747726368, 189006099916444293090, 9768094831949586349262, 508712466332195692590121, 26670630123516854616641671, 1406503552584980596900001922, 74559627811441047591493767590
Offset: 0

Views

Author

Michael D. Weiner, Jun 16 2016

Keywords

Comments

a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,5n) that stay below the line y=5/3x and also do not contain a proper subpath of smaller size.

Examples

			a(2) = 133 since there are 133 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,10) that stay below the line y=5/3x and also do not contain a proper subpath of small size; e.g., ENEEEENNNNENNNNN is a factor-free Dyck word but ENEENNENNNEENNNN contains the factor EENNENNN.
		

Crossrefs

Factor-free Dyck words: A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274257 (slope 4/3), A274259 (slope 7/3).

Formula

Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(8*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/8) = 1 + 7*x + 133*x^2 + 4140*x^3 + ... . Equivalently, [x^n]( A(x)^(8*n) ) = binomial(8*n, 3*n) for n = 0,1,2,... . - Peter Bala, Jan 01 2020

A000778 a(n) = Catalan(n) + Catalan(n+1) - 1.

Original entry on oeis.org

1, 2, 6, 18, 55, 173, 560, 1858, 6291, 21657, 75581, 266797, 950911, 3417339, 12369284, 45052514, 165002459, 607283489, 2244901889, 8331383609, 31030387439, 115948830659, 434542177289, 1632963760973, 6151850548775, 23229299473603, 87900903988155
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000108.
Equals A005807(n) - 1. Cf. A071716.

Programs

  • Mathematica
    Table[CatalanNumber[n] + CatalanNumber[n + 1] - 1, {n, 0, 200}] (* T. D. Noe, Jun 20 2012 *)

Formula

D-finite with recurrence (n+2)*a(n) +(-5*n-4)*a(n-1) +(3*n+4)*a(n-2) +(5*n-16)*a(n-3) +2*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Jun 17 2020

A067294 Third column of triangle A028364.

Original entry on oeis.org

5, 9, 23, 66, 202, 645, 2123, 7150, 24518, 85306, 300390, 1068484, 3833364, 13855085, 50401395, 184392150, 677998830, 2504191470, 9286661010, 34564913820, 129077071500, 483474711330, 1815928888254
Offset: 0

Views

Author

Wolfdieter Lang, Feb 05 2002

Keywords

Comments

The first two columns give: A000108 (Catalan) and A005807. The next two columns give: A067295-6.

Crossrefs

First differences are in A071747.

Formula

a(n)= A028364(n+2, 2) = C(0)*C(n+2)+C(1)*C(n+1)+C(2)*C(n), with the Catalan numbers C(n)=A000108(n). a(n)= ((11*n^2+28*n+15)/(2*(2*n+1)*(2*n+3)))*C(n+2).
G.f.: (c2(x)*c(x)-(c2(x)-1)/x)/x^2, with c2(x) := 1+x+2*x^2 and c(x) G.f. for Catalan numbers A000108.

A133603 The matrix-vector product A133566 * A000108.

Original entry on oeis.org

1, 1, 3, 5, 19, 42, 174, 429, 1859, 4862, 21658, 58786, 266798, 742900, 3417340, 9694845, 45052515, 129644790, 607283490, 1767263190, 8331383610, 24466267020, 115948830660, 343059613650, 1632963760974, 4861946401452
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133602 is a companion sequence.

Examples

			a(5) = C(5) = 42.
a(6) = 174 = C(6) + C(5) = 132 + 42.
		

Crossrefs

Cf. A133566, A000108, A133602, A024492 (bisection).

Programs

Formula

A133566 * A000108 where A133566 = an infinite lower triangular matrix and A000108 = the Catalan sequence. For odd n, a(n) = C(n). For even n, a(n) = C(n) + C(n-1) = A005807(n-1).
Conjecture: n*(n-2)*(3*n-1)*(n+1)*a(n) -8*n*(2*n-3)*a(n-1) -4*(n-1)*(3*n+2)*(
2*n-3)*(2*n-5)*a(n-2)=0. - R. J. Mathar, Jun 20 2015

A350584 Triangle read by rows, T(n, k) = [x^k] ((2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2)), for n >= 1 and 0 <= k < n.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 12, 19, 1, 6, 18, 37, 56, 1, 7, 25, 62, 118, 174, 1, 8, 33, 95, 213, 387, 561, 1, 9, 42, 137, 350, 737, 1298, 1859, 1, 10, 52, 189, 539, 1276, 2574, 4433, 6292, 1, 11, 63, 252, 791, 2067, 4641, 9074, 15366, 21658
Offset: 1

Views

Author

Peter Luschny, Mar 27 2022

Keywords

Examples

			Triangle starts:
[1] [1]
[2] [1,  3]
[3] [1,  4,  7]
[4] [1,  5, 12,  19]
[5] [1,  6, 18,  37,  56]
[6] [1,  7, 25,  62, 118,  174]
[7] [1,  8, 33,  95, 213,  387,  561]
[8] [1,  9, 42, 137, 350,  737, 1298, 1859]
[9] [1, 10, 52, 189, 539, 1276, 2574, 4433, 6292]
		

Crossrefs

A280891 (row sums), A135339 (alternating row sums), A005807 or A071716 (main diagonal).

Programs

  • Maple
    # Compare the analogue algorithm for the Bell triangle in A046937.
    A350584Triangle := proc(len) local A, P, T, n; A := [2]; P := [1]; T := [[1]];
    for n from 1 to len-1 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := P; T := [op(T), P] od; T end:
    A350584Triangle(10): ListTools:-Flatten(%);
    # Alternative:
    ogf := n -> (2*x^3 - 3*x^2 - x + 1)/(1 - x)^(n + 2):
    ser := n -> series(ogf(n), x, n):
    row := n -> seq(coeff(ser(n), x, k), k = 0..n-1):
    seq(row(n), n = 1..10);

A133602 The matrix-vector product A133080 * A000108.

Original entry on oeis.org

1, 2, 2, 7, 14, 56, 132, 561, 1430, 6292, 16796, 75582, 208012, 950912, 2674440, 12369285, 35357670, 165002460, 477638700, 2244901890, 6564120420, 31030387440, 91482563640, 434542177290, 1289904147324, 6151850548776
Offset: 0

Views

Author

Gary W. Adamson, Sep 18 2007

Keywords

Comments

A133603 is a companion sequence.

Examples

			a(4) = C(4) = 14.
a(5) = 56 = C(5) + C(4) = 42 + 14.
		

Crossrefs

Programs

  • Python
    from sympy import catalan
    def a005807(n): return catalan(n) + catalan(n + 1)
    def a048990(n): return catalan(2*n)
    l=[1, 2]
    for n in range(2, 31): l+=[a048990(n//2) if n%2==0 else a005807(n - 1)]
    print(l) # Indranil Ghosh, Jul 15 2017

Formula

A133080 * A000108, where A133080 = an infinite lower triangular matrix and A000108 = the Catalan sequence as a vector.
a(2n) = A048990(n).
a(2n+1) = A005807(2n).
Conjecture: n*(n-1)*(n-3)*(3*n-4)*a(n) -8*(n-1)*(2*n-5)*a(n-1) -4*(n-2)*(3*n-1)*(2*n-5)*(2*n-7)*a(n-2)=0. - R. J. Mathar, Jun 20 2015

A323212 The Fibonacci-Catalan Hybrid. Expansion of 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1). Square array read by descending antidiagonals, A(n,k) for n,k >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 3, 3, 0, 5, 7, 7, 5, 0, 14, 19, 19, 15, 8, 0, 42, 56, 56, 46, 30, 13, 0, 132, 174, 174, 146, 103, 58, 21, 0, 429, 561, 561, 477, 351, 220, 109, 34, 0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55, 0, 4862, 6292, 6292, 5434, 4180, 2884, 1756, 908, 365, 89
Offset: 0

Views

Author

Peter Luschny, Feb 14 2019

Keywords

Examples

			      1,   0,    0,    0,     0,      0,      0,       0,       0, ...
      1,   1,    2,    5,    14,     42,    132,     429,    1430, ... [A000108]
      2,   3,    7,   19,    56,    174,    561,    1859,    6292, ... [A005807]
      3,   7,   19,   56,   174,    561,   1859,    6292,   21658, ... [A005807]
      5,  15,   46,  146,   477,   1595,   5434,   18798,   65858, ...
      8,  30,  103,  351,  1205,   4180,  14651,   51844,  185028, ...
     13,  58,  220,  801,  2884,  10372,  37401,  135420,  492558, ...
     21, 109,  453, 1756,  6621,  24674,  91532,  339184, 1257762, ...
     34, 201,  908, 3734, 14719,  56796, 216698,  821848, 3107583, ...
     55, 365, 1781, 7746, 31872, 127245, 499164, 1937439, 7470819, ...
A000045,A023610,...
Seen as a triangle a refinement of A000958:
[0]                                1
[1]                              0, 1
[2]                            0, 1, 2
[3]                           0, 2, 3, 3
[4]                         0, 5, 7, 7, 5
[5]                      0, 14, 19, 19, 15, 8
[6]                   0, 42, 56, 56, 46, 30, 13
[7]               0, 132, 174, 174, 146, 103, 58, 21
[8]            0, 429, 561, 561, 477, 351, 220, 109, 34
[9]       0, 1430, 1859, 1859, 1595, 1205, 801, 453, 201, 55
		

Crossrefs

Antidiagonal sums (or row sums of the triangle) are A000958.

Programs

  • Maple
    gf := 1 + x*(2*(x + 1))/(sqrt(1 - 4*y) - 2*x*(x + 1) + 1):
    serx := series(gf, x, 20): sery := n -> series(coeff(serx, x, n), y, 20):
    row := n -> seq(coeff(sery(n), y, j), j=0..9):
    seq(lprint(row(n)), n=0..9);
  • Mathematica
    m = 11; T = PadRight[CoefficientList[#+O[y]^m, y], m]& /@ CoefficientList[1 + 2x(x+1)/(Sqrt[1-4y] - 2x(x+1) + 1) + O[x]^m, x]; Table[T[[n-k+1, k]], {n, 1, m}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Mar 20 2019 *)
Previous Showing 11-20 of 21 results. Next