A176850
a(n,k) is the number of ways to choose integers i,j from {0,1,...,k} such that the inequalities |i-j| <= n <= i+j are satisfied.
Original entry on oeis.org
1, 2, 3, 1, 3, 6, 6, 3, 1, 4, 9, 11, 10, 6, 3, 1, 5, 12, 16, 17, 15, 10, 6, 3, 1, 6, 15, 21, 24, 24, 21, 15, 10, 6, 3, 1, 7, 18, 26, 31, 33, 32, 28, 21, 15, 10, 6, 3, 1, 8, 21, 31, 38, 42, 43, 41, 36, 28, 21, 15, 10, 6, 3, 1, 9, 24, 36, 45, 51, 54, 54, 51, 45, 36, 28, 21, 15, 10, 6, 3, 1, 10, 27, 41, 52, 60, 65, 67, 66, 62, 55, 45, 36, 28, 21, 15, 10, 6, 3
Offset: 0
Triangle begins
1;
2, 3, 1;
3, 6, 6, 3, 1;
4, 9, 11, 10, 6, 3, 1;
5, 12, 16, 17, 15, 10, 6, 3, 1;
6, 15, 21, 24, 24, 21, 15, 10, 6, 3, 1;
7, 18, 26, 31, 33, 32, 28, 21, 15, 10, 6, 3, 1;
8, 21, 31, 38, 42, 43, 41, 36, 28, 21, 15, 10, 6, 3, 1;
9, 24, 36, 45, 51, 54, 54, 51, 45, 36, 28, 21, 15, 10, 6, 3, 1;
10, 27, 41, 52, 60, 65, 67, 66, 62, 55, 45, 36, 28, 21, 15, 10, 6, 3, 1;
-
Seq:=[]: for k from 0 to 15 do for n from 0 to k do Seq:= [op(Seq), -(3/2)*n^2+2*k*n+(1/2)*n+k+1] end do; for n from k+1 to 2*k do Seq:= [op(Seq), (1/2)*(2*k-n+1)*(2*k-n+2)] end do; end do; Seq;
-
Table[If[n <= k, -(3/2)*n^2 + 2*k*n + n/2 + k + 1, (2*k - n + 1)*(2*k - n + 2)/2], {k, 0, 8}, {n, 0, 2 k}] // Flatten (* Michael De Vlieger, Jul 10 2022 *)
A194359
Triangle of divisors of 210^n, each number occurring once.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 4, 9, 12, 18, 20, 25, 28, 36, 45, 49, 50, 60, 63, 75, 84, 90, 98, 100, 126, 140, 147, 150, 175, 180, 196, 225, 245, 252, 294, 300, 315, 350, 420, 441, 450, 490, 525, 588, 630, 700, 735, 882, 900
Offset: 0
-
Join[{{1}}, Table[Complement[Divisors[210^n], Divisors[210^(n-1)]], {n, 9}]]
Take[DeleteDuplicates[Flatten[Divisors/@(210^Range[5])]],100] (* Harvey P. Dale, Sep 03 2020 *)
A272297
a(n) = n^4 + 64.
Original entry on oeis.org
64, 65, 80, 145, 320, 689, 1360, 2465, 4160, 6625, 10064, 14705, 20800, 28625, 38480, 50689, 65600, 83585, 105040, 130385, 160064, 194545, 234320, 279905, 331840, 390689, 457040, 531505, 614720, 707345, 810064, 923585, 1048640, 1185985, 1336400, 1500689, 1679680, 1874225, 2085200
Offset: 0
-
[n^4+64: n in [0..40]];
-
Table[n^4 + 64, {n, 0, 40}]
-
makelist(n^4+64, n, 0, 40);
-
vector(40, n, n--; n^4+64)
-
[n**4+64 for n in range(40)]
-
for n in range(0,10**5):print(n**4+64) # Soumil Mandal, Apr 30 2016
-
[n^4+64 for n in (0..40)]
A341050
Cube array read by upward antidiagonals ignoring zero and empty terms: T(n, k, r) is the number of n-ary strings of length k, containing r consecutive 0's.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 3, 1, 5, 8, 1, 1, 3, 1, 5, 8, 1, 7, 21, 19, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 43, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 47, 1, 11, 65, 208, 295, 94, 1, 1, 3, 1, 5, 8, 1, 7, 21, 20, 1, 9, 40, 81, 48, 1, 11, 65, 208, 297, 107, 1, 13, 96, 425, 1024, 1037, 201
Offset: 2
For n = 5, k = 6 and r = 4, there are 65 strings: {000000, 000001, 000002, 000003, 000004, 000010, 000011, 000012, 000013, 000014, 000020, 000021, 000022, 000023, 000024, 000030, 000031, 000032, 000033, 000034, 000040, 000041, 000042, 000043, 000044, 010000, 020000, 030000, 040000, 100000, 100001, 100002, 100003, 100004, 110000, 120000, 130000, 140000, 200000, 200001, 200002, 200003, 200004, 210000, 220000, 230000, 240000, 300000, 300001, 300002, 300003, 300004, 310000, 320000, 330000, 340000, 400000, 400001, 400002, 400003, 400004, 410000, 420000, 430000, 440000}
The first seven slices of the tetrahedron (or pyramid) are:
-----------------Slice 1-----------------
1
-----------------Slice 2-----------------
1
1 3
-----------------Slice 3-----------------
1
1 3
1 5 8
-----------------Slice 4-----------------
1
1 3
1 5 8
1 7 21 19
-----------------Slice 5-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 43
-----------------Slice 6-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 47
1 11 65 208 295 94
-----------------Slice 7-----------------
1
1 3
1 5 8
1 7 21 20
1 9 40 81 48
1 11 65 208 297 107
1 13 96 425 1024 1037 201
Cf.
A005408,
A003215,
A005917,
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528,
A022529,
A022530,
A022531,
A022532,
A022533,
A022534,
A022535,
A022536,
A022537,
A022538,
A022539,
A022540 (k=x, r=1, where x is the x-th Nexus Number).
Cf.
A000567 [(k=4, r=2),(k=5, r=3),(k=6, r=4),...,(k=x, r=x-2)].
Cf.
A103532 [(k=6, r=3),(k=7, r=4),(k=8, r=5),...,(k=x, r=x-3)].
-
m[r_, n_] := Normal[With[{p = 1/n}, SparseArray[{Band[{1, 2}] -> p, {i_, 1} /; i <= r -> 1 - p, {r + 1, r + 1} -> 1}]]]; T[n_, k_, r_] := MatrixPower[m[r, n], k][[1, r + 1]]*n^k; DeleteCases[Transpose[PadLeft[Reverse[Table[T[n, k, r], {k, 2, 8}, {r, 2, k}, {n, 2, r}], 2]], 2 <-> 3], 0, 3] // Flatten
A346263
Irregular triangle of numbers T(n,k) read by rows where each T(n,k) is the number of large or small squares that are used to tile elementary squares of type 2 whose length of side is A344332(n).
Original entry on oeis.org
9, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 9, 49, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 49, 9, 81, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 49, 9, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 121, 9, 9, 49, 9, 25, 9, 9, 81, 9, 9, 9, 25, 9, 9, 9, 9, 25, 9, 9, 49, 9, 9
Offset: 1
The triangle T begins:
n\k 1 2 3 4 5
1: 9
2: 9
3: 9
4: 9
5: 25
6: 9
7: 9
8: 9
9: 9
10: 25
11: 9
12: 9
13: 9
14: 49
15: 9
16: 9, 25
17: 9
...
The first elementary side that is a multiple of two primitive sides (15 and 65) is A344332(16) = 195 = 13*15 = 3*65.
As 195 = 13*15, the number z of squares with side a = 13*3 = 39 and b = 13*4 = 52 to tile this elementary square is T(16,1) = (39/(65-52))^2 = 9.
As 195 = 3 * 65, the number z of squares with side a = 3*5 = 15 and b = 3*12 = 36 to tile this elementary square is T(16,2) = (15/(39-36))^2 = 25.
Hence, the elementary square with side A344332(16) = 195 has two different possible tilings: with T(16,1) = 9 squares of sides (a,b) = (39,52) or with T(16,2) = 25 squares of sides (a,b) = (15,36).
Elementary square 195 X 195 with a = 39, b = 52, s = 195, z = 9:
________ ________ ________ _____
| | | | |
| | | | |
| | | |_____|
|________|________|________| |
| | | | |
| | | |_____|
| | | | |
|________|________|________| |
| | | |_____|
| | | | |
| | | | |
|_____ __|___ ____|_ ______|_____|
| | | | | |
| | | | | |
|_____|______|______|______|_____|
A365206
Centered octachoral numbers.
Original entry on oeis.org
1, 49, 337, 1249, 3361, 7441, 14449, 25537, 42049, 65521, 97681, 140449, 195937, 266449, 354481, 462721, 594049, 751537, 938449, 1158241, 1414561, 1711249, 2052337, 2442049, 2884801, 3385201, 3948049, 4578337, 5281249, 6062161, 6926641, 7880449, 8929537
Offset: 1
A260550
a(n) is the number of 2 X 2 matrices with entries in {1, ..., n} that are not the product of two 2 X 2 positive integer matrices.
Original entry on oeis.org
1, 15, 75, 237, 559, 1157, 2055, 3471, 5449, 8131, 11633, 16361, 22041, 29349, 38329, 48839, 61325, 76479, 93957, 114717, 138041, 164153, 194505, 229625, 268259, 311031, 359719, 413245, 472145, 537835, 608837, 688121, 774877, 867549, 971403, 1080637, 1198233, 1326059, 1467029, 1617451, 1777881, 1948219, 2132381, 2329081, 2539351
Offset: 1
The matrix [2,2;3,3] is decomposable: [2,2;3,3] = [1,1;1,2] * [1,1;1,1]. However, the matrix [2,3;3;2] is not decomposable.
- Michael S. Branicky, Table of n, a(n) for n = 1..60
- Michael S. Branicky, Python program
- Aldo González Lorenzo, Scilab function for computing this sequence
- P. F. Rivett and N. I. P. Mackinnon, Prime Matrices, The Mathematical Gazette, Vol. 70, No. 454 (Dec., 1986), pp. 257-259.
A272850
a(n) = (n^2 + (n+1)^2)*(n^2 + (n+1)^2 + 2*n*(n+1)).
Original entry on oeis.org
1, 45, 325, 1225, 3321, 7381, 14365, 25425, 41905, 65341, 97461, 140185, 195625, 266085, 354061, 462241, 593505, 750925, 937765, 1157481, 1413721, 1710325, 2051325, 2440945, 2883601, 3383901, 3946645, 4576825, 5279625
Offset: 0
A346265
a(n) is the number of distinct possible tilings of type 1 (A344331) or of type 2 (A344332) for a square whose side is A344330(n).
Original entry on oeis.org
1, 1, 2, 5, 3, 2, 2, 9, 1, 1, 2, 2, 1, 4, 9, 4, 2, 2, 13, 5, 3, 2, 4, 10, 2, 5, 2, 2, 1, 16, 2, 4, 6, 2, 10, 4, 1, 4, 2, 2, 17, 3, 2, 9, 13, 3, 6, 2, 3, 19, 2, 3, 4, 6, 2, 10, 6, 2, 7, 23, 2, 2, 3, 4, 18, 8, 4, 4, 2, 18, 2, 2, 6, 2, 18, 2, 4, 2, 4, 2, 2, 21, 3, 4, 6, 11, 14, 6, 2, 23
Offset: 1
-> A344330(1) = A344331(1) = 10 and there is no k_2 such that A344330(1) = A344332(k_2) = 10, then a(1) = A345287(1) = 1 (example below of type 1):
Primitive square 10 X 10 corresponding to a(1) = 1 with
a = 1, b = 2, s = 10, z = 20:
___ ___ _ ___ ___ _
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
| | |_| | |_|
|___|___|_|___|___|_|
-> A344330(2) = A344332(1) = 15 and there is no k_1 such that A344330(2) = A344331(k_1) = 15, then a(2) = A346264(1) = 1 (example below of type 2):
Primitive square 15 X 15 corresponding to a(2) = 1 with
a = 3, b = 4, c = 5, s = 15, z = 9:
________ ________ ________ ______
| | | | |
| | | | |
| | | |______|
|_______ |________|________| |
| | | | |
| | | |______|
| | | | |
|________|________|________| |
| | | |______|
| | | | |
| | | | |
|_____ __|___ ____|_ ______|______|
| | | | | |
| | | | | |
|_____|______|______|______|______|
-> A344330(4) = A344331(3) = A344332(2) = 30, then a(4) = A345287(3) + A346264(2) = 3+2 = 5 (see link with the corresponding 5 distinct tilings).
-> A344330(6) = A344332(3) = 45 and there is no k_1 such that A344330(6) = A344331(k_1) = 45, then a(6) = A346264(3) = 2.
- Ivan Yashchenko, Invitation to a Mathematical Festival, pp. 10 and 102, MSRI, Mathematical Circles Library, 2013.
-
\\ isok1 from A344331 and isok2 from A344332
isok3(s) = {if (!(s % 2) && ispower(s/2, 4), return (0)); my(m = sqrtnint(s, 3)); vecsearch(setbinop((x, y)->if (gcd(x, y)==1, x*y*(x^2+y^2), 0), [1..m]), s); } \\ A344333
sd7(x) = sumdiv(x, d, if (isok3(d), numdiv(x/d))); \\ A345287
isok7(k) = my(kk= sqrtnint(k\4, 3)+2); vecsearch(vector(kk, i, (i+1)^4 - i^4), k); \\ A005917
sd4(x) = sumdiv(x, d, if (isok7(d), numdiv(x/d))); \\ A346264
lista(nn) = {for (n=1, nn, my(b1 = isok1(n), b2 = isok2(n)); if (b1 || b2, my(x = 0); if (b1, x += sd7(n)); if (b2, x += sd4(n)); print1(x, ", ");););} \\ Michel Marcus, Dec 23 2021
A353890
a(n) is the period of the binary sequence {b(m)} defined by b(m) = 1 if (m+1)^n - m^n and (m+2)^n - 2*(m+1)^n + m^n are coprime, 0 otherwise.
Original entry on oeis.org
1, 1, 5, 11, 91, 1247, 3485, 263017, 852841, 1241058127, 74966255, 243641132605417, 181556731572385303, 718802057694183783881, 6582662048285, 943422576750791493013356207217, 487331778345355477261, 607088607861933740557075591887834842297
Offset: 2
For n=2 and n=3, the first and second differences are coprime for all m. Each of their sequences {b(m)} consist only of 1's, which can be described trivially as [1] with a period of 1, so a(2) = a(3) = 1.
For n > 3, the first and second differences are coprime for some m values, but not for all. Each repeating periodic sequence {b(m)} begins at m=1, and can be used to predict what b(m) will be at any higher m value for that power n.
n=4 has the 5-term repeating sequence, beginning at m=1:
[0 0 1 1 1], so a(4) = 5.
The sequence is repeating, so for example, f(41)..f(45) is also [0 0 1 1 1].
n=5 has the 11-term repeating sequence
[1 1 0 1 1 0 1 1 1 1 1]
so a(5) = 11.
n=6 has the 91-term repeating sequence
[0 0 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0
0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1]
so a(6) = 91.
The period for higher n values has yet to be found. If they exist, it seems they would be quite large given the large expansion from 5, 11, to 91.
Example: the 233rd term in the sequence of values for n=6 is calculated by using m=233 and n=6. Define the first difference for the 233rd term as 234^6 - 233^6 = 4164782373647. The second difference for the 233rd term is 235^6 - 2*234^6 + 233^6 = 89948228762. The terms 4164782373647 and 89948228762 share a common factor, so the 233rd term of the sequence for 6th powered terms is denoted 0 (not coprime). Because the 6th powered terms repeat their tendency of being coprime or not every 91 terms, we could instead look at 233 mod 91 = 51, and from the table for n=6 above, the 51st term is 0.
Cf.
A005408,
A007395,
A003215,
A008588,
A005917,
A005914,
A022521,
A068236,
A022522,
A069473,
A069925,
A001045,
A002587.
Comments