cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A231775 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(n)*x^(n) which is the denominator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = (x + 1)/(x + 2).

Original entry on oeis.org

2, 1, 2, 3, 1, 10, 17, 10, 2, 18, 47, 45, 19, 3, 58, 173, 210, 129, 40, 5, 130, 491, 769, 642, 302, 76, 8, 362, 1545, 2850, 2940, 1830, 687, 144, 13, 882, 4391, 9565, 11925, 9315, 4671, 1469, 265, 21, 2330, 12901, 31898, 46195, 43170, 26994, 11294, 3049, 482
Offset: 1

Views

Author

Clark Kimberling, Nov 13 2013

Keywords

Comments

Sum of numbers in row n: 3*A002534(n). Left edge: 2*A006131. Right edge: A000045 (Fibonacci numbers).

Examples

			First 3 rows:
2 .... 1
2 .... 3 .... 1
10 ... 17 ... 10 ... 2
First 3 polynomials:  2 + x, 2 + 3*x + x^2, 10 + 17*x + 10*x^2 + 2*x^3.
		

Crossrefs

Programs

  • Mathematica
    t[n_] := t[n] = Table[(x + 1)/(x + 2), {k, 0, n}];
    b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
    p[x_, n_] := p[x, n] = Last[Expand[Denominator[b]]][[n]];
    u = Table[p[x, n], {n, 1, 10}]
    v = CoefficientList[u, x]; Flatten[v]

A242763 a(n) = 1 for n <= 7; a(n) = a(n-5) + a(n-7) for n>7.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 7, 8, 9, 9, 12, 12, 15, 16, 17, 21, 21, 27, 28, 32, 37, 38, 48, 49, 59, 65, 70, 85, 87, 107, 114, 129, 150, 157, 192, 201, 236, 264, 286, 342, 358, 428, 465, 522, 606, 644, 770, 823, 950, 1071, 1166, 1376
Offset: 1

Views

Author

Keywords

Comments

Generalized Fibonacci growth sequence using i = 2 as maturity period, j = 5 as conception period, and k = 2 as growth factor.
Maturity period is the number of periods that a Fibonacci tree node needs for being able to start developing branches. Conception period is the number of periods in a Fibonacci tree node needed to develop new branches since its maturity. Growth factor is the number of additional branches developed by a Fibonacci tree node, plus 1, and equals the base of the exponential series related to the given tree if maturity factor would be zero. Standard Fibonacci would use 1 as maturity period, 1 as conception period, and 2 as growth factor as the series becomes equal to 2^n with a maturity period of 0. Related to Lucas sequences.

Examples

			For n = 13 the a(13) = a(8) + a(6) = 2 + 1 = 3.
		

Crossrefs

Cf. A000079 (i = 0, j = 1, k = 2), A000244 (i = 0, j = 1, k = 3), A000302 (i = 0, j = 1, k = 4), A000351 (i = 0, j = 1, k = 5), A000400 (i = 0, j = 1, k = 6), A000420 (i = 0, j = 1, k = 7), A001018 (i = 0, j = 1, k = 8), A001019 (i = 0, j = 1, k = 9), A011557 (i = 0, j = 1, k = 10), A001020 (i = 0, j = 1, k = 11), A001021 (i = 0, j = 1, k = 12), A016116 (i = 0, j = 2, k = 2), A108411 (i = 0, j = 2, k = 3), A213173 (i = 0, j = 2, k = 4), A074872 (i = 0, j = 2, k = 5), A173862 (i = 0, j = 3, k = 2), A127975 (i = 0, j = 3, k = 3), A200675 (i = 0, j = 4, k = 2), A111575 (i = 0, j = 4, k = 3), A000045 (i = 1, j = 1, k = 2), A001045 (i = 1, j = 1, k = 3), A006130 (i = 1, j = 1, k = 4), A006131 (i = 1, j = 1, k = 5), A015440 (i = 1, j = 1, k = 6), A015441 (i = 1, j = 1, k = 7), A015442 (i = 1, j = 1, k = 8), A015443 (i = 1, j = 1, k = 9), A015445 (i = 1, j = 1, k = 10), A015446 (i = 1, j = 1, k = 11), A015447 (i = 1, j = 1, k = 12), A000931 (i = 1, j = 2, k = 2), A159284 (i = 1, j = 2, k = 3), A238389 (i = 1, j = 2, k = 4), A097041 (i = 1, j = 2, k = 10), A079398 (i = 1, j = 3, k = 2), A103372 (i = 1, j = 4, k = 2), A103373 (i = 1, j = 5, k = 2), A103374 (i = 1, j = 6, k = 2), A000930 (i = 2, j = 1, k = 2), A077949 (i = 2, j = 1, k = 3), A084386 (i = 2, j = 1, k = 4), A089977 (i = 2, j = 1, k = 5), A178205 (i = 2, j = 1, k = 11), A103609 (i = 2, j = 2, k = 2), A077953 (i = 2, j = 2, k = 3), A226503 (i = 2, j = 3, k = 2), A122521 (i = 2, j = 6, k = 2), A003269 (i = 3, j = 1, k = 2), A052942 (i = 3, j = 1, k = 3), A005686 (i = 3, j = 2, k = 2), A237714 (i = 3, j = 2, k = 3), A238391 (i = 3, j = 2, k = 4), A247049 (i = 3, j = 3, k = 2), A077886 (i = 3, j = 3, k = 3), A003520 (i = 4, j = 1, k = 2), A108104 (i = 4, j = 2, k = 2), A005708 (i = 5, j = 1, k = 2), A237716 (i = 5, j = 2, k = 3), A005709 (i = 6, j = 1, k = 2), A122522 (i = 6, j = 2, k = 2), A005710 (i = 7, j = 1, k = 2), A237718 (i = 7, j = 2, k = 3), A017903 (i = 8, j = 1, k = 2).

Programs

  • Magma
    [n le 7 select 1 else Self(n-5)+Self(n-7): n in [1..70]]; // Vincenzo Librandi, Nov 30 2016
    
  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 1, 0, 1}, {1, 1, 1, 1, 1, 1, 1}, 70] (*  or *)
    CoefficientList[ Series[(1+x+x^2+x^3+x^4)/(1-x^5-x^7), {x, 0, 70}], x] (* Robert G. Wilson v, Nov 25 2016 *)
    nxt[{a_,b_,c_,d_,e_,f_,g_}]:={b,c,d,e,f,g,a+c}; NestList[nxt,{1,1,1,1,1,1,1},70][[;;,1]] (* Harvey P. Dale, Oct 22 2024 *)
  • PARI
    Vec(x*(1+x+x^2+x^3+x^4)/((1-x+x^2)*(1+x-x^3-x^4-x^5)) + O(x^100)) \\ Colin Barker, Oct 27 2016
    
  • SageMath
    @CachedFunction # a = A242763
    def a(n): return 1 if n<8 else a(n-5) +a(n-7)
    [a(n) for n in range(1,76)] # G. C. Greubel, Oct 23 2024

Formula

Generic a(n) = 1 for n <= i+j; a(n) = a(n-j) + (k-1)*a(n-(i+j)) for n>i+j where i = maturity period, j = conception period, k = growth factor.
G.f.: x*(1+x+x^2+x^3+x^4) / ((1-x+x^2)*(1+x-x^3-x^4-x^5)). - Colin Barker, Oct 09 2016
Generic g.f.: x*(Sum_{l=0..j-1} x^l) / (1-x^j-(k-1)*x^(i+j)), with i > 0, j > 0 and k > 1.

A305834 Triangle read by rows: T(0,0)= 1; T(n,k)= T(n-1,k) + 4*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 1, 12, 16, 1, 16, 48, 1, 20, 96, 64, 1, 24, 160, 256, 1, 28, 240, 640, 256, 1, 32, 336, 1280, 1280, 1, 36, 448, 2240, 3840, 1024, 1, 40, 576, 3584, 8960, 6144, 1, 44, 720, 5376, 17920, 21504, 4096
Offset: 0

Views

Author

Shara Lalo, Jun 11 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013611 ((1+4*x)^n).
The coefficients in the expansion of 1/(1-x-4*x^2) are given by the sequence generated by the row sums.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 2.5615528128...: A222132 (sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... ))))), when n approaches infinity.

Examples

			Triangle begins:
1;
1;
1,  4;
1,  8;
1, 12,   16;
1, 16,   48;
1, 20,   96,    64;
1, 24,  160,   256;
1, 28,  240,   640,    256;
1, 32,  336,  1280,   1280;
1, 36,  448,  2240,   3840,   1024;
1, 40,  576,  3584,   8960,   6144;
1, 44,  720,  5376,  17920,  21504,    4096;
1, 48,  880,  7680,  32256,  57344,   28672;
1, 52, 1056, 10560,  53760, 129024,  114688,   16384;
1, 56, 1248, 14080,  84480, 258048,  344064,  131072;
1, 60, 1456, 18304, 126720, 473088,  860160,  589824,  65536;
1, 64, 1680, 23296, 183040, 811008, 1892352, 1966080, 589824;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 371, 372.

Crossrefs

Row sums give A006131.
Cf. A000012 (column 0), A008586 (column 1), A035008 (column 2), A141478 (column 3), A120054 (column 4).
Cf. A013611.
Cf. A222132.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 4 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten

Formula

G.f.: 1/(1 - t*x - 4*t^2).
Column k is binomial (n + k - 1, k) * 4^k.

A330795 Evaluation of the polynomials given by the Riordan square of the Fibonacci sequence with a(0) = 1 (A193737) at 1/2 and normalized with 2^n.

Original entry on oeis.org

1, 3, 9, 39, 153, 615, 2457, 9831, 39321, 157287, 629145, 2516583, 10066329, 40265319, 161061273, 644245095, 2576980377, 10307921511, 41231686041, 164926744167, 659706976665, 2638827906663, 10555311626649, 42221246506599, 168884986026393, 675539944105575
Offset: 0

Views

Author

Peter Luschny, Jan 10 2020

Keywords

Crossrefs

Cf. A006131, A015521, A193737, A321620, A324969 (Fibonacci with a(0)=1).

Programs

  • Magma
    [1] cat [3*(4^n -(-1)^n)/5: n in [1..30]]; // G. C. Greubel, Sep 14 2023
    
  • Maple
    gf := (4*x^2 - 1)/(x*(4*x + 3) - 1): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n=0.. 25);
    # Alternative:
    gf:= (3/5)*exp(-x)*(exp(5*x) - 1) + 1: ser := series(gf, x, 32):
    seq(n!*coeff(ser, x, n), n=0.. 25);
    # Or:
    a := proc(n) option remember; if n < 3 then return [1, 3, 9][n + 1] fi;
    4*a(n-2) + 3*a(n-1) end: seq(a(n), n=0..25);
  • Mathematica
    LinearRecurrence[{3,4}, {1,3,9}, 31] (* G. C. Greubel, Sep 14 2023 *)
  • SageMath
    [3*(4^n -(-1)^n)//5 + int(n==0) for n in range(31)] # G. C. Greubel, Sep 14 2023

Formula

a(n) = 2^n*Sum_{k=0..n} A193737(n,k)/2^k.
a(n) = [x^n] (1 - 4*x^2)/(1 - x*(3 + 4*x)).
a(n) = n! [x^n] (3/5)*exp(-x)*(exp(5*x) - 1) + 1.
a(n) = 4*a(n-2) + 3*a(n-1).
a(n) = 3*A015521(n), n>0. - R. J. Mathar, Aug 19 2022

A101617 The trinomial transform (A027907) gives powers of 3, while the trinomial transform of this sequence shift one place left gives powers of 5.

Original entry on oeis.org

1, 1, 1, 3, -3, 19, -43, 139, -355, 995, -2587, 6907, -17939, 46931, -121419, 314603, -811203, 2091459, -5379963, 13833179, -35527795, 91210035, -234020267, 600258507, -1539135779, 3945762211, -10113490139, 25918908603, -66417608403, 170182721299, -436032111883, 1117120911019
Offset: 0

Views

Author

Paul D. Hanna, Dec 09 2004

Keywords

Examples

			3^3 = 1*(1) + 3*(1) + 6*(1) + 7*(3) + 6*(-3) + 3*(19) + 1*(-43).
5^3 = 1*(1) + 3*(1) + 6*(3) + 7*(-3) + 6*(19) + 3*(-43) + 1*(139).
In general, a sequence A with the property that the
trinomial transform of A gives powers of P, while the
trinomial transform of LSHIFT(A) gives powers of Q
has the g.f.: N(x)/D(x) where
N(x)=(1+3*x-(Q-3)*x^2-(P+Q-2)*x^3) and
D(x)=(1+2*x-(P+Q-3)*x^2-(P+Q-2)*x^3+(P-1)*(Q-1)*x^4).
		

Crossrefs

Programs

  • Mathematica
    nn:=31; CoefficientList[Series[(1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x
    ^2 - 6*x^3 + 8*x^4),{x,0,nn}],x] (* Georg Fischer, Apr 17 2020 *)
  • PARI
    {a(n)=local(P=3,Q=5,V=[1,1]);if(n>1, for(m=1,n, V=concat(V,P^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+1])); V=concat(V,Q^m-sum(k=0,2*m-1,polcoeff((1+x+x^2)^m+x*O(x^k),k)*V[k+2])); ));V[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f.: A(x) = (1 + 3*x - 2*x^2 - 6*x^3)/(1 + 2*x - 5*x^2 - 6*x^3 + 8*x^4). [corrected by Georg Fischer, Apr 17 2020]
3^n = Sum_{k=0..2*n} A027907(n, k)*a(k) for n>=0 and
5^n = Sum_{k=0..2*n} A027907(n, k)*a(k+1) for n>=0.
a(n) = (-1)^n*A006131(n-1) + (1/3)[(-2)^n + 2]. - Ralf Stephan, May 16 2007

A358945 Decimal expansion of the positive root of 4*x^2 + x - 1.

Original entry on oeis.org

3, 9, 0, 3, 8, 8, 2, 0, 3, 2, 0, 2, 2, 0, 7, 5, 6, 8, 7, 2, 7, 6, 7, 6, 2, 3, 1, 9, 9, 6, 7, 5, 9, 6, 2, 8, 1, 4, 3, 3, 9, 9, 9, 0, 3, 1, 7, 1, 7, 0, 2, 5, 5, 4, 2, 9, 9, 8, 2, 9, 1, 9, 6, 6, 3, 6, 8, 6, 9, 2, 9, 3, 2, 9, 2, 2
Offset: 0

Views

Author

Wolfdieter Lang, Jan 20 2023

Keywords

Comments

The negative root is -(A189038 - 1) = -0.6403882032... .
c^n = A052923(-n) + A006131(-(n+1))*phi17, for n >= 0, with phi17 = A222132 = (1 + sqrt(17))/2, A052923(-n) = -(-2*i)^(-n)*S(-(n+2), i/2) = (i/2)^n*S(n, i/2), with i = sqrt(-1), and A006131(-(n+1)) = A052923(-n+1)/4 = -(i/2)^(n+1)*S(n-1, i/2), with the S-Chebyshev polynomials (see A049310), and S(-n, x) = -S(n-2, x), for n >= 1. - Wolfdieter Lang, Jan 04 2024

Examples

			c = 0.39038820320220756872767623199675962814339990317170255429982919663...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Sqrt[17] - 1)/8, 10, 120][[1]] (* Amiram Eldar, Jan 20 2023 *)
    RealDigits[Root[4x^2+x-1,2],10,120][[1]] (* Harvey P. Dale, Jan 15 2024 *)

Formula

c = (-1 + sqrt(17))/8 = A189038 - 5/4 = A174930 - 5/8.
c = 1/phi17 = (-1 + phi17)/4, with phi17 = A222132. - Wolfdieter Lang, Jan 05 2024
Previous Showing 41-46 of 46 results.