A368265
Expansion of e.g.f. exp(2*x) / (1 - x*exp(x)).
Original entry on oeis.org
1, 3, 12, 65, 460, 4057, 42922, 529769, 7472808, 118586033, 2090936014, 40554647377, 858082563532, 19668880007129, 485528656965762, 12841428220413593, 362276791422785488, 10859170086870710497, 344648459867067117334, 11546148650974694099201
Offset: 0
A377529
Expansion of e.g.f. 1/(1 - x * exp(x))^2.
Original entry on oeis.org
1, 2, 10, 66, 560, 5770, 69852, 970886, 15228880, 266006610, 5119447700, 107617719022, 2453167135608, 60268223308826, 1587381621990556, 44619277892537910, 1333135910963656352, 42189279001183102882, 1409741875877923927332, 49597905017847180008126
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(1-x Exp[x])^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 04 2025 *)
-
a(n) = n!*sum(k=0, n, (k+1)*k^(n-k)/(n-k)!);
A308861
Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).
Original entry on oeis.org
1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022
A346889
Expansion of e.g.f. 1 / (1 - x^3 * exp(x) / 3!).
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 40, 315, 2296, 15204, 117720, 1127445, 11531740, 120909646, 1370809804, 17111895255, 227853866800, 3182209445640, 47003318806896, 737325061500009, 12187616610231540, 210930852047426770, 3821604062633503300, 72479758506840597451
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - x^3 Exp[x]/3!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^3*exp(x)/3!))) \\ Michel Marcus, Aug 06 2021
-
a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(6^k*(n-3*k)!)); \\ Seiichi Manyama, May 13 2022
A358080
Expansion of e.g.f. 1/(1 - x^2 * exp(x)).
Original entry on oeis.org
1, 0, 2, 6, 36, 260, 2190, 21882, 248696, 3181320, 45229050, 707208590, 12063902532, 222939837276, 4436813677478, 94605994108290, 2151763873634160, 51999544476324752, 1330540380342907506, 35936656483848501654, 1021700660649312689660
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*exp(x))))
-
a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(n-2*k)!);
A092148
Expansion of e.g.f. 1/(exp(x)-x*exp(2*x)).
Original entry on oeis.org
1, 0, 3, 11, 85, 739, 7831, 96641, 1363209, 21632759, 381433771, 7398080029, 156533563693, 3588046200179, 88571349871551, 2342565398442569, 66087436823953681, 1980956920420309231, 62871632567144951635, 2106277265332074827573, 74276723394195659799861
Offset: 0
-
With[{nn=20},CoefficientList[Series[1/(Exp[x]-x Exp[2x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 19 2020 *)
-
a(n)=n!*sum(k=0,n,(n-k-1)^k/k!)
A308862
Expansion of e.g.f. 1/(1 - x*(1 + 3*x + x^2)*exp(x)).
Original entry on oeis.org
1, 1, 10, 81, 976, 14505, 258456, 5377897, 127852096, 3419620209, 101625743080, 3322169384721, 118475520287136, 4577175039397753, 190436902905933880, 8489222610046324665, 403657900923994965376, 20393319895130130117729, 1090902632352025316904648
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - x (1 + 3 x + x^2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + 3*x + x^2)*exp(x)))) \\ Michel Marcus, Mar 10 2022
A346888
Expansion of e.g.f. 1 / (1 - x^2 * exp(x) / 2).
Original entry on oeis.org
1, 0, 1, 3, 12, 70, 465, 3591, 31948, 319068, 3539385, 43205635, 575312826, 8298867798, 128921967265, 2145837600375, 38097353658120, 718657756980376, 14354000800751313, 302625047150614179, 6716038666999745710, 156498725047355717250, 3820426102008414736761
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x^2 Exp[x]/2), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^2*exp(x)/2))) \\ Michel Marcus, Aug 06 2021
-
a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(2^k*(n-2*k)!)); \\ Seiichi Manyama, May 13 2022
A346890
Expansion of e.g.f. 1 / (1 - x^4 * exp(x) / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 5, 15, 35, 140, 1386, 12810, 92730, 589545, 4234945, 41832791, 483334215, 5401798220, 57262207380, 626438655900, 7740130412796, 107197808258745, 1546730804858085, 22360919412385015, 329241486278715395, 5121840342205301946
Offset: 0
-
nmax = 24; CoefficientList[Series[1/(1 - x^4 Exp[x]/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^4*exp(x)/4!))) \\ Michel Marcus, Aug 06 2021
-
a(n) = n!*sum(k=0, n\4, k^(n-4*k)/(24^k*(n-4*k)!)); \\ Seiichi Manyama, May 13 2022
A351703
Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).
Original entry on oeis.org
1, 1, 1, 1, 0, 4, 1, 0, 1, 21, 1, 0, 0, 3, 148, 1, 0, 0, 1, 12, 1305, 1, 0, 0, 0, 4, 70, 13806, 1, 0, 0, 0, 1, 10, 465, 170401, 1, 0, 0, 0, 0, 5, 40, 3591, 2403640, 1, 0, 0, 0, 0, 1, 15, 315, 31948, 38143377, 1, 0, 0, 0, 0, 0, 6, 35, 2296, 319068, 672552730
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, ...
21, 3, 1, 0, 0, 0, ...
148, 12, 4, 1, 0, 0, ...
1305, 70, 10, 5, 1, 0, ...
13806, 465, 40, 15, 6, 1, ...
-
T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));
-
T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022