cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 81 results. Next

A368265 Expansion of e.g.f. exp(2*x) / (1 - x*exp(x)).

Original entry on oeis.org

1, 3, 12, 65, 460, 4057, 42922, 529769, 7472808, 118586033, 2090936014, 40554647377, 858082563532, 19668880007129, 485528656965762, 12841428220413593, 362276791422785488, 10859170086870710497, 344648459867067117334, 11546148650974694099201
Offset: 0

Views

Author

Seiichi Manyama, Dec 19 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n-k+2)^k/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+2)^k / k!.
a(n) ~ n! / ((1 + LambertW(1)) * LambertW(1)^(n+2)). - Vaclav Kotesovec, Dec 29 2023

A377529 Expansion of e.g.f. 1/(1 - x * exp(x))^2.

Original entry on oeis.org

1, 2, 10, 66, 560, 5770, 69852, 970886, 15228880, 266006610, 5119447700, 107617719022, 2453167135608, 60268223308826, 1587381621990556, 44619277892537910, 1333135910963656352, 42189279001183102882, 1409741875877923927332, 49597905017847180008126
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-x Exp[x])^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 04 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)*k^(n-k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+1) * k^(n-k)/(n-k)!.
a(n) ~ n! * n/((1 + LambertW(1))^2 * LambertW(1)^n). - Vaclav Kotesovec, Oct 31 2024

A308861 Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).

Original entry on oeis.org

1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^2*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 3*r + r^2)), where r = A201941 = 0.44413022882396659058546632949098466707932096994213775695918... is the root of the equation exp(r)*r*(1 + r) = 1. - Vaclav Kotesovec, Jun 29 2019

A346889 Expansion of e.g.f. 1 / (1 - x^3 * exp(x) / 3!).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 40, 315, 2296, 15204, 117720, 1127445, 11531740, 120909646, 1370809804, 17111895255, 227853866800, 3182209445640, 47003318806896, 737325061500009, 12187616610231540, 210930852047426770, 3821604062633503300, 72479758506840597451
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[1/(1 - x^3 Exp[x]/3!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 3] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^3*exp(x)/3!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(6^k*(n-3*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,3) * a(n-k).
a(n) ~ n! / ((1 + LambertW(2^(1/3)/3^(2/3))) * 3^(n+1) * LambertW(2^(1/3)/3^(2/3))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-3*k)/(6^k * (n-3*k)!). - Seiichi Manyama, May 13 2022

A358080 Expansion of e.g.f. 1/(1 - x^2 * exp(x)).

Original entry on oeis.org

1, 0, 2, 6, 36, 260, 2190, 21882, 248696, 3181320, 45229050, 707208590, 12063902532, 222939837276, 4436813677478, 94605994108290, 2151763873634160, 51999544476324752, 1330540380342907506, 35936656483848501654, 1021700660649312689660
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^2*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(n-2*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n - 2*k)/(n - 2*k)!.
a(n) ~ n! / ((1 + LambertW(1/2)) * 2^(n+1) * LambertW(1/2)^n). - Vaclav Kotesovec, Oct 30 2022

A092148 Expansion of e.g.f. 1/(exp(x)-x*exp(2*x)).

Original entry on oeis.org

1, 0, 3, 11, 85, 739, 7831, 96641, 1363209, 21632759, 381433771, 7398080029, 156533563693, 3588046200179, 88571349871551, 2342565398442569, 66087436823953681, 1980956920420309231, 62871632567144951635, 2106277265332074827573, 74276723394195659799861
Offset: 0

Views

Author

Ralf Stephan, Mar 31 2004

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(Exp[x]-x Exp[2x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 19 2020 *)
  • PARI
    a(n)=n!*sum(k=0,n,(n-k-1)^k/k!)

Formula

a(n) = n! * Sum_{k=0..n} (n-k-1)^k/k!. [Corrected by Georg Fischer, Jun 22 2022]
a(n) ~ n! / ((LambertW(1) + 1) * LambertW(1)^(n-1)). - Vaclav Kotesovec, Jun 22 2022

Extensions

Corrected and extended by Harvey P. Dale, Sep 19 2020

A308862 Expansion of e.g.f. 1/(1 - x*(1 + 3*x + x^2)*exp(x)).

Original entry on oeis.org

1, 1, 10, 81, 976, 14505, 258456, 5377897, 127852096, 3419620209, 101625743080, 3322169384721, 118475520287136, 4577175039397753, 190436902905933880, 8489222610046324665, 403657900923994965376, 20393319895130130117729, 1090902632352025316904648
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - x (1 + 3 x + x^2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + 3*x + x^2)*exp(x)))) \\ Michel Marcus, Mar 10 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^3*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^3 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 7*r + 6*r^2 + r^3)), where r = 0.33649177041401456061485914122406146158245451810028937972189... is the root of the equation exp(r)*r*(1 + 3*r + r^2) = 1. - Vaclav Kotesovec, Jun 29 2019

A346888 Expansion of e.g.f. 1 / (1 - x^2 * exp(x) / 2).

Original entry on oeis.org

1, 0, 1, 3, 12, 70, 465, 3591, 31948, 319068, 3539385, 43205635, 575312826, 8298867798, 128921967265, 2145837600375, 38097353658120, 718657756980376, 14354000800751313, 302625047150614179, 6716038666999745710, 156498725047355717250, 3820426102008414736761
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x^2 Exp[x]/2), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^2*exp(x)/2))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\2, k^(n-2*k)/(2^k*(n-2*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,2) * a(n-k).
a(n) ~ n! / ((1 + LambertW(1/sqrt(2))) * 2^(n+1) * LambertW(1/sqrt(2))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-2*k)/(2^k * (n-2*k)!). - Seiichi Manyama, May 13 2022

A346890 Expansion of e.g.f. 1 / (1 - x^4 * exp(x) / 4!).

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 15, 35, 140, 1386, 12810, 92730, 589545, 4234945, 41832791, 483334215, 5401798220, 57262207380, 626438655900, 7740130412796, 107197808258745, 1546730804858085, 22360919412385015, 329241486278715395, 5121840342205301946
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 06 2021

Keywords

Crossrefs

Column k=4 of A351703.

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[1/(1 - x^4 Exp[x]/4!), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Binomial[k, 4] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1-x^4*exp(x)/4!))) \\ Michel Marcus, Aug 06 2021
    
  • PARI
    a(n) = n!*sum(k=0, n\4, k^(n-4*k)/(24^k*(n-4*k)!)); \\ Seiichi Manyama, May 13 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * binomial(k,4) * a(n-k).
a(n) ~ n! / ((1 + LambertW(3^(1/4)/2^(5/4))) * 4^(n + 1) * LambertW(3^(1/4)/2^(5/4))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = n! * Sum_{k=0..floor(n/4)} k^(n-4*k)/(24^k * (n-4*k)!). - Seiichi Manyama, May 13 2022

A351703 Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).

Original entry on oeis.org

1, 1, 1, 1, 0, 4, 1, 0, 1, 21, 1, 0, 0, 3, 148, 1, 0, 0, 1, 12, 1305, 1, 0, 0, 0, 4, 70, 13806, 1, 0, 0, 0, 1, 10, 465, 170401, 1, 0, 0, 0, 0, 5, 40, 3591, 2403640, 1, 0, 0, 0, 0, 1, 15, 315, 31948, 38143377, 1, 0, 0, 0, 0, 0, 6, 35, 2296, 319068, 672552730
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2022

Keywords

Examples

			Square array begins:
      1,   1,  1,  1, 1, 1, ...
      1,   0,  0,  0, 0, 0, ...
      4,   1,  0,  0, 0, 0, ...
     21,   3,  1,  0, 0, 0, ...
    148,  12,  4,  1, 0, 0, ...
   1305,  70, 10,  5, 1, 0, ...
  13806, 465, 40, 15, 6, 1, ...
		

Crossrefs

Column k=1..5 gives A006153, A346888, A346889, A346890, A346893.

Programs

  • PARI
    T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));
    
  • PARI
    T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ Seiichi Manyama, May 13 2022

Formula

T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * T(j,k) for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(k!^j * (n-k*j)!). - Seiichi Manyama, May 13 2022
Previous Showing 21-30 of 81 results. Next