A351280
a(n) = Sum_{k=0..n} k! * k^k * Stirling1(n,k).
Original entry on oeis.org
1, 1, 7, 140, 5254, 318854, 28455182, 3506576856, 570360248856, 118356589567440, 30512901324706608, 9566812017770347152, 3584662956711860108352, 1581905384865801328253712, 812047187127758913474118032, 479763784808095613489811245568
Offset: 0
-
a[0] = 1; a[n_] := Sum[k! * k^k * StirlingS1[n, k], {k, 1, n}]; Array[a, 16, 0] (* Amiram Eldar, Feb 06 2022 *)
-
a(n) = sum(k=0, n, k!*k^k*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k*log(1+x))^k)))
A129841
Antidiagonal sums of triangle T defined in A048594: T(j,k) = k! * Stirling1(j,k), 1<= k <= j.
Original entry on oeis.org
1, -1, 4, -12, 52, -256, 1502, -10158, 78360, -680280, 6574872, -70075416, 816909816, -10342968456, 141357740736, -2074340369088, 32530886655168, -542971977209760, 9610316495698416, -179788450082431536, 3544714566466060032
Offset: 1
First seven rows of T are
[ 1 ]
[ -1, 2 ]
[ 2, -6, 6 ]
[ -6, 22, -36, 24 ]
[ 24, -100, 210, -240, 120 ]
[ -120, 548, -1350, 2040, -1800, 720 ]
[ 720, -3528, 9744, -17640, 21000, -15120, 5040 ]
- P. Curtz, Integration numerique des systemes differentiels a conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, 1969, 135 pages, p. 61. Available from Centre d'Electronique de L'Armement, 35170 Bruz, France, or INRIA, Projets Algorithmes, 78150 Rocquencourt.
- P. Curtz, Gazette des Mathematiciens, 1992, no. 52, p. 44.
- P. Flajolet, X. Gourdon and B. Salvy, Gazette des Mathematiciens, 1993, no. 55, pp. 67-78.
-
m:=21; T:=[ [ Factorial(k)*StirlingFirst(j, k): k in [1..j] ]: j in [1..m] ]; [ &+[ T[j-k+1][k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // Klaus Brockhaus, Jun 03 2007
-
m = 21; t[j_, k_] := k!*StirlingS1[j, k]; Total /@ Table[ t[j-k+1, k], {j, 1, m}, {k, 1, Quotient[j+1, 2]}] (* Jean-François Alcover, Aug 13 2012, translated from Klaus Brockhaus's Magma program *)
A305307
Expansion of e.g.f. 1/(1 - log(1 + x)/(1 - x)).
Original entry on oeis.org
1, 1, 3, 17, 120, 1084, 11642, 146446, 2101656, 33958344, 609431232, 12033015840, 259163792016, 6047213451408, 151953760489008, 4091057804809104, 117485988199385088, 3584814699783432960, 115816462543697120640, 3949619921174717629056, 141780511159572486530304, 5344008726418981985707776
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 120*x^4/4! + 1084*x^5/5! + 11642*x^6/6! + ...
-
g:= proc(n) g(n):= `if`(n=1, 0, g(n-1))-(-1)^n/n end:
b:= proc(n) option remember; `if`(n=0, 1,
add(g(j)*b(n-j), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
-
nmax = 21; CoefficientList[Series[1/(1 - Log[1 + x]/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[1/(1 - Sum[Sum[(-1)^(j + 1)/j, {j, 1, k}] x^k , {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[((-1)^(k + 1) LerchPhi[-1, 1, k + 1] + Log[2]) a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 21}]
A330150
Expansion of e.g.f. exp(-x) / (1 - log(1 + x)).
Original entry on oeis.org
1, 0, 0, 1, -1, 8, -16, 159, -659, 6824, -46680, 517581, -4941685, 61043344, -735256328, 10269016939, -147207286503, 2322683458544, -38298239486672, 677630804946393, -12581447014620585, 247342217288517496, -5096876494438056928, 110338442309322274295
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[-x]/(1 - Log[1 + x]), {x, 0, nmax}], x] Range[0, nmax]!
A334369
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. (1 - (k-1)*log(1 + x))/(1 - k*log(1 + x)).
Original entry on oeis.org
1, 1, 1, 1, 1, -1, 1, 1, 1, 2, 1, 1, 3, 2, -6, 1, 1, 5, 14, 4, 24, 1, 1, 7, 38, 86, 14, -120, 1, 1, 9, 74, 384, 664, 38, 720, 1, 1, 11, 122, 1042, 4854, 6136, 216, -5040, 1, 1, 13, 182, 2204, 18344, 73614, 66240, 600, 40320, 1, 1, 15, 254, 4014, 49774, 387512, 1302552, 816672, 6240, -362880
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
2, 2, 14, 38, 74, 122, ...
-6, 4, 86, 384, 1042, 2204, ...
24, 14, 664, 4854, 18344, 49774, ...
-
T[0, k_] = 1; T[n_, k_] := Sum[If[k == 0 && j <= 1, 1, k^(j - 1)] * j! * StirlingS1[n, j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 01 2021 *)
A347023
E.g.f.: 1 / (1 - 6 * log(1 + x))^(1/6).
Original entry on oeis.org
1, 1, 6, 72, 1254, 28794, 819888, 27869316, 1101032100, 49570797780, 2505156062472, 140417898936336, 8644973807845368, 579908437058338920, 42098286646367326368, 3288252917244250703664, 274974019392668843164176, 24510436934573885695407504, 2319947117871178825560902112
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 6 Log[1 + x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
A354134
Expansion of e.g.f. 1/(1 - log(1 + x)^3/6).
Original entry on oeis.org
1, 0, 0, 1, -6, 35, -205, 1204, -6692, 29084, 17160, -3069924, 61356724, -959574408, 13499619224, -174983776176, 2029529618080, -18417948918640, 36189097244720, 4235753092128480, -157628320980720480, 4166967770825777280, -95152715945973322560
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3/6)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1)/6^k);
A354135
Expansion of e.g.f. 1/(1 - log(1 + x)^5/120).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, -15, 175, -1960, 22449, -269073, 3403070, -45510630, 643152796, -9586136560, 150319669136, -2473024029840, 42562037379744, -764017130370276, 14260496108114340, -275877454002406236, 5512350021871343616, -113318466860425703184
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^5/120)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, binomial(i, j)*stirling(j, 5, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 1)/120^k);
A354229
Expansion of e.g.f. 1/(1 - log(1 + x)^3).
Original entry on oeis.org
1, 0, 0, 6, -36, 210, -630, -5376, 153048, -2194296, 22190760, -93956544, -2677330656, 97821857952, -2019503487456, 27899293618944, -98409183995520, -9548919666829440, 410311098024923520, -10652005874894469120, 176525303194482117120, -46197517147757867520
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-log(1+x)^3)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=6*sum(j=1, i, binomial(i, j)*stirling(j, 3, 1)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\3, (3*k)!*stirling(n, 3*k, 1));
A354237
Expansion of e.g.f. 1 / (1 - log(1 + 2*x) / 2).
Original entry on oeis.org
1, 1, 0, 2, -8, 64, -592, 6768, -90624, 1395840, -24292608, 471453696, -10094066688, 236340378624, -6007053852672, 164713554069504, -4846361933021184, 152300800682754048, -5091189648734748672, 180386551596145508352, -6752521487083688165376
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(1 - Log[1 + 2 x]/2), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! 2^(n - k), {k, 0, n}], {n, 0, 20}]
-
my(x='x + O('x^20)); Vec(serlaplace(1/(1-log(1+2*x)/2))) \\ Michel Marcus, Jun 06 2022
Comments