cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A145188 Continued cotangent recurrence a(n+1)=a(n)^3+3*a(n) and a(1)=14.

Original entry on oeis.org

14, 2786, 21624372014, 10111847525912679844192131854786, 1033930953043290626825587838528711318150300040875029341893199068078185510802565166824630504014
Offset: 1

Views

Author

Artur Jasinski, Oct 03 2008

Keywords

Comments

General formula for continued cotangent recurrences type:
a(n+1)=a(n)3+3*a(n) and a(1)=k is following:
a(n)=Floor[((k+Sqrt[k^2+4])/2)^(3^(n-1))]
k=1 see A006267
k=2 see A006266
k=3 see A006268
k=4 see A006267(n+1)
k=5 see A006269
k=6 see A145180
k=7 see A145181
k=8 see A145182
k=9 see A145183
k=10 see A145184
k=11 see A145185
k=12 see A145186
k=13 see A145187
k=14 see A145188
k=15 see A145189
Essentially the same as A006266. [From R. J. Mathar, Mar 18 2009]

Crossrefs

Programs

  • Mathematica
    a = {}; k = 14; Do[AppendTo[a, k]; k = k^3 + 3 k, {n, 1, 6}]; a
    or
    Table[Floor[((14 + Sqrt[200])/2)^(3^(n - 1))], {n, 1, 5}] (*Artur Jasinski*)

Formula

a(n+1)=a(n)3+3*a(n) and a(1)=14
a(n)=Floor[((14+Sqrt[14^2+4])/2)^(3^(n-1))]

A002813 a(0) = 4; for n > 0, a(n) = a(n-1)^3 - 3*a(n-1)^2 + 3.

Original entry on oeis.org

4, 19, 5779, 192900153619, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155219
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
The next term, a(7), has 305 digits. - Harvey P. Dale, Jul 19 2011
From Peter Bala, Nov 22 2012: (Start)
The present sequence is the case x = 1 of the following general remarks about the recurrence a(n+1) = a(n)^3 - 3*a(n-1)^2 + 3. Cf. A002814.
Define a sequence of polynomials P(n,x) inductively by setting P(0,x) = x^2 + 3 and P(n+1,x) = P(n,x^3 + 3*x) for n >= 0. Then P(n,x) satisfies the cubic recurrence P(n+1,x) = P(n,x)^3 - 3*P(n-1,x)^2 + 3 with the initial condition P(0,x) = x^2 + 3.
An explicit formula is P(n,x) = Q(3^(n+1),x)/Q(3^n,x), where Q(n,x) = ((x + sqrt(x^2 + 4))/2)^n + ((x - sqrt(x^2 + 4))/2)^n.
Alternatively, P(n,x) = ((x^2 + 2 + sqrt(x^4 + 4*x^2))/2)^(3^n) + ((x^2 + 2 - sqrt(x^4 + 4*x^2))/2)^(3^n) + 1.
Iterating the algebraic identity x/sqrt(x^2 + 4) = (1 - 2/(x^2 + 3))*y/sqrt(y^2 + 4), where y = x^3 + 3*x, leads to the product expansion x/sqrt(x^2 + 4) = Product_{n = 0..oo} (1 - 2/P(n,x)). See Escott and also Fine.
The sequence A(n,x) := x*Product_{k = 0..n} P(k,x) satisfies the recurrence A(n+1,x) = A(n,x)^3 + 3*A(n,x). These sequences occur in the continued cotangent expansions of Lehmer. Cases currently in the database are A006267 (x = 1), A006266 (x = 2), A006268 (x = 3), A006269 (x = 5) and A145180 through A145189 (x = 6 through x = 15).
(End)

References

  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, p. 397.
  • E. Lucas, Nouveaux théorèmes d'arithmétique supérieure, Comptes Rend., 83 (1876), 1286-1288.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Lucas(2*3^n)+1: n in [0..5]]; // Vincenzo Librandi, Jul 20 2011
  • Mathematica
    NestList[#^3-3#^2+3&,4,6] (* Harvey P. Dale, Jul 19 2011 *)
  • PARI
    a(n)=if(n<1,4*(n==0),a(n-1)^3-3*a(n-1)^2+3)
    
  • PARI
    a(n)=if(n<0,0,n=2*3^n;fibonacci(n+1)+fibonacci(n-1)+1)
    

Formula

a(n) = L(2*3^n)+1 where L=Lucas numbers.
a(n) = L(3^(n+1))/L(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = A001999(n)+1. - R. J. Mathar, Apr 22 2007
From Peter Bala, Nov 22 2012: (Start)
a(n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1.
(1/5)*sqrt(5) = Product_{n = 0..oo} (1 - 2/a(n)).
A006267(n+1) = Product_{k = 0..n} a(k).
A002814(n+1) = a(n) - 2. (End)
Previous Showing 11-12 of 12 results.