A162543 A Chebyshev transform of the large Schroeder numbers A006318.
1, 2, 5, 18, 73, 312, 1391, 6406, 30235, 145478, 710951, 3519248, 17608681, 88914250, 452512229, 2318774506, 11953427329, 61948592936, 322570037543, 1686777086942, 8854240330363, 46638995523598, 246443050810895
Offset: 0
Links
- Fung Lam, Table of n, a(n) for n = 0..1335
Crossrefs
Cf. A162548.
Programs
-
GAP
a:=[2,5,18,73,312,1391];; for n in [7..30] do a[n]:=(3*(2*n-1)*a[n-1] - (4*n-5)*a[n-2] +12*(n-2)*a[n-3] -(4*n-11)*a[n-4] +3*(2*n-7)*a[n-5] -(n-5)*a[n-6])/(n+1); od; Concatenation([1], a); # G. C. Greubel, Feb 23 2019
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-x+x^2 - Sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2)) )); // G. C. Greubel, Feb 23 2019 -
Mathematica
CoefficientList[Series[(1-x+x^2 - Sqrt[1-6*x+3*x^2-6*x^3+x^4])/(2*x*(1+x^2)), {n,0,30}], x] (* G. C. Greubel, Feb 23 2019 *)
-
PARI
my(x='x+O('x^30)); Vec((1-x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2))) \\ G. C. Greubel, Feb 23 2019
-
Sage
((1-x+x^2 -sqrt(1-6*x+3*x^2-6*x^3+x^4))/( 2*x*(1+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 23 2019
Formula
G.f.: (1/(1+x^2))*S(x/(1+x^2)), S(x) the g.f. of A006318;
G.f.: (1-x+x^2 - sqrt(1-6*x+3*x^2-6*x^3+x^4))/(2*x*(1+x^2)).
G.f.: 1/(1+x^2-2*x/(1-x/(1+x^2-2*x/(1-x/(1+x^2-2*x/(1-x/(1+x+2*x^2/(1-... (continued fraction);
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A006318(n-2*k).
Recurrence: (n+1)*a(n) = (5-n)*a(n-6) + 3*(2*n-7)*a(n-5) + (11-4*n)*a(n-4) + 12*(n-2)*a(n-3) + (5-4*n)*a(n-2) + 3*(2*n-1)*a(n-1), n>=6. - Fung Lam, Feb 19 2014
Comments