cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 270 results. Next

A078782 Nonprimes (A018252) with prime (A000040) subscripts.

Original entry on oeis.org

4, 6, 9, 12, 18, 21, 26, 28, 34, 42, 45, 52, 57, 60, 65, 74, 81, 84, 91, 95, 98, 106, 112, 119, 128, 133, 135, 141, 143, 147, 165, 170, 177, 180, 192, 195, 203, 209, 214, 220, 228, 231, 244, 246, 250, 253, 267, 284, 288, 290, 295, 301, 303, 316, 323, 329, 336
Offset: 1

Views

Author

Joseph L. Pe, Jan 09 2003

Keywords

Comments

a(n) = A018252(A000040(n)). Subsequence of A175250 (nonprimes (A018252) with noncomposite (A008578) subscripts), a(n) = A175250(n+1). a(n) U A102615(n) = A018252(n). [From Jaroslav Krizek, Mar 13 2010]

Examples

			a(4) = nonprime(prime(4)) = nonprime(7) = 12.
		

Crossrefs

Let A = primes A000040, B = nonprimes A018252. The 2-level compounds are AA = A006450, AB = A007821, BA = A078782, BB = A102615. The 3-level compounds AAA, AAB, ..., BBB are A038580, A049078, A270792, A102617, A270794, A270796, A102216.

Programs

  • Python
    from sympy import prime, composite
    def A078782(n): return composite(prime(n)-1) # Chai Wah Wu, Nov 13 2024

Extensions

Corrected by Jaroslav Krizek, Mar 13 2010

A339112 Products of primes of semiprime index (A106349).

Original entry on oeis.org

1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A semiprime (A001358) is a product of any two prime numbers.
Also MM-numbers of labeled multigraphs with loops (without uncovered vertices). A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
     1:            149:   (34)     313:     (36)
     7:   (11)     161: (11)(22)   329:   (11)(23)
    13:   (12)     163:   (18)     343: (11)(11)(11)
    23:   (22)     167:   (26)     347:     (29)
    29:   (13)     169: (12)(12)   373:     (1C)
    43:   (14)     199:   (19)     377:   (12)(13)
    47:   (23)     203: (11)(13)   389:     (45)
    49: (11)(11)   227:   (44)     421:     (1D)
    73:   (24)     233:   (27)     439:     (37)
    79:   (15)     257:   (35)     443:     (1E)
    91: (11)(12)   269:   (28)     449:     (2A)
    97:   (33)     271:   (1A)     467:     (46)
   101:   (16)     293:   (1B)     487:     (2B)
   137:   (25)     299: (12)(22)   491:     (1F)
   139:   (17)     301: (11)(14)   499:     (38)
		

Crossrefs

These primes (of semiprime index) are listed by A106349.
The strict (squarefree) case is A340020.
The prime instead of semiprime version:
primes: A006450
products: A076610
strict: A302590
The nonprime instead of semiprime version:
primes: A007821
products: A320628
odd: A320629
strict: A340104
odd strict: A340105
The squarefree semiprime instead of semiprime version:
strict: A309356
primes: A322551
products: A339113
A001358 lists semiprimes, with odd and even terms A046315 and A100484.
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A056239 gives the sum of prime indices, which are listed by A112798.
A084126 and A084127 give the prime factors of semiprimes.
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A338898, A338912, and A338913 give the prime indices of semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Maple
    N:= 1000: # for terms up to N
    SP:= {}: p:= 1:
    for i from 1 do
      p:= nextprime(p);
      if 2*p > N then break fi;
      Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
      SP:= SP union Q;
    od:
    SP:= sort(convert(SP,list)):
    PSP:= map(ithprime,SP):
    R:= {1}:
    for p in PSP do
      Rp:= {}:
      for k from 1 while p^k <= N do
        Rpk:= select(`<=`,R, N/p^k);
        Rp:= Rp union map(`*`,Rpk, p^k);
      od;
      R:= R union Rp;
    od:
    sort(convert(R,list)); # Robert Israel, Nov 03 2024
  • Mathematica
    semiQ[n_]:=PrimeOmega[n]==2;
    Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]

A058325 Primes for which A049076(p) = 9.

Original entry on oeis.org

5381, 2269733, 17624813, 50728129, 77557187, 131807699, 259336153, 368345293, 440817757, 563167303, 751783477, 1107276647, 1170710369, 1367161723, 1760768239, 2062666783, 2323114841, 2458721501, 2621760397, 2860139341
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 8] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058324(n)). - R. J. Mathar, Jul 07 2012

A340019 MM-numbers of labeled graphs with half-loops, without isolated vertices.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2021

Keywords

Comments

Here a half-loop is an edge with only one vertex, to be distinguished from a full loop, which has two equal vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
Also products of distinct primes whose prime indices are either themselves prime or a squarefree semiprime (A006881).

Examples

			The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
     1: {}              55: {{2},{3}}      137: {{2,5}}
     3: {{1}}           59: {{7}}          139: {{1,7}}
     5: {{2}}           65: {{2},{1,2}}    141: {{1},{2,3}}
    11: {{3}}           67: {{8}}          143: {{3},{1,2}}
    13: {{1,2}}         73: {{2,4}}        145: {{2},{1,3}}
    15: {{1},{2}}       79: {{1,5}}        149: {{3,4}}
    17: {{4}}           83: {{9}}          155: {{2},{5}}
    29: {{1,3}}         85: {{2},{4}}      157: {{12}}
    31: {{5}}           87: {{1},{1,3}}    163: {{1,8}}
    33: {{1},{3}}       93: {{1},{5}}      165: {{1},{2},{3}}
    39: {{1},{1,2}}    101: {{1,6}}        167: {{2,6}}
    41: {{6}}          109: {{10}}         177: {{1},{7}}
    43: {{1,4}}        123: {{1},{6}}      179: {{13}}
    47: {{2,3}}        127: {{11}}         187: {{3},{4}}
    51: {{1},{4}}      129: {{1},{1,4}}    191: {{14}}
		

Crossrefs

The version with full loops covering an initial interval is A320461.
The case covering an initial interval is A340018.
The version with full loops is A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]

A058326 Primes for which A049076(p) = 10.

Original entry on oeis.org

52711, 37139213, 326851121, 997525853, 1559861749, 2724711961, 5545806481, 8012791231, 9672485827, 12501968177, 16917026909, 25366202179, 26887732891, 31621854169, 41192432219, 48596930311, 55022031709, 58379844161
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 9] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058325(n)). - R. J. Mathar, Jul 07 2012

A058327 Primes for which A049076(p) = 11.

Original entry on oeis.org

648391, 718064159, 7069067389, 22742734291, 36294260117, 64988430769, 136395369829, 200147986693, 243504973489, 318083817907, 435748987787, 664090238153, 705555301183, 835122557939, 1099216100167, 1305164025929
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 10] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058326(n)). - R. J. Mathar, Jul 07 2012

A072677 a(n) = prime(prime(n)+1) where prime(k) is the k-th prime.

Original entry on oeis.org

5, 7, 13, 19, 37, 43, 61, 71, 89, 113, 131, 163, 181, 193, 223, 251, 281, 293, 337, 359, 373, 409, 433, 463, 521, 557, 569, 593, 601, 619, 719, 743, 787, 809, 863, 881, 929, 971, 997, 1033, 1069, 1091, 1163, 1181, 1213, 1223, 1301, 1423, 1439, 1451, 1481, 1511, 1531, 1601, 1627, 1693, 1733, 1747, 1789, 1831, 1861, 1931
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Jul 05 2002

Keywords

Comments

Prime numbers q for which the number of prime numbers smaller than q is also a prime number.

Examples

			a(4)=prime(prime(4)+1), prime(4)=7, hence a(4)=prime(8)=19.
163 is in the sequence because (1) it is a prime number, (2) there are 37 prime numbers smaller than 163 and 37 is also a prime number.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(ithprime(ithprime(i)+1),i=1..51);
  • Mathematica
    Prime[Prime[Range[60]]+1] (* Harvey P. Dale, Nov 07 2016 *)
  • PARI
    a(n) = prime(prime(n)+1); \\ Michel Marcus, Nov 17 2017

Extensions

Edited by N. J. A. Sloane, Nov 04 2018 at the suggestion of Georg Fischer, Nov 03 2018, merging a duplicate entry with this one.

A050435 a(n) = composite(composite(n)), where composite = A002808, composite numbers.

Original entry on oeis.org

9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Comments

Second-order composite numbers.
Composites (A002808) with composite (A002808) subscripts. a(n) U A022449(n) = A002808(n). Subsequence of A175251 (composites (A002808) with nonprime (A018252) subscripts), a(n) = A175251(n+1) for n >= 1. - Jaroslav Krizek, Mar 14 2010

Examples

			The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
		

Crossrefs

Programs

  • Haskell
    a050435 = a002808 . a002808
    a050435_list = map a002808 a002808_list
    -- Reinhard Zumkeller, Jan 12 2013
    
  • Mathematica
    Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ]
    With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler
    a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
    
  • Python
    from sympy import composite
    def a(n): return composite(composite(n))
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(n)).
a(n) = n + 2n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jun 25 2017

Extensions

More terms from Robert G. Wilson v, Dec 20 2000

A057847 Primes p whose order of primeness A078442(p) is at least 10.

Original entry on oeis.org

648391, 9737333, 174440041, 718064159, 3657500101, 7069067389, 16123689073, 22742734291, 36294260117, 64988430769, 88362852307, 136395369829, 175650481151, 200147986693, 243504973489, 318083817907, 414507281407
Offset: 1

Views

Author

Robert G. Wilson v, Nov 10 2000

Keywords

Crossrefs

Programs

Formula

a(n) = prime(A057851(n)). - Andrew Howroyd, Nov 17 2024

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024

A057849 Primes p whose order of primeness A078442(p) is at least 7.

Original entry on oeis.org

709, 5381, 52711, 167449, 648391, 1128889, 2269733, 3042161, 4535189, 7474967, 9737333, 14161729, 17624813, 19734581, 23391799, 29499439, 37139213, 38790341, 50728129, 56011909, 59053067, 68425619, 77557187, 87019979, 101146501, 113256643, 119535373, 127065427
Offset: 1

Views

Author

Robert G. Wilson v, Nov 10 2000

Keywords

Crossrefs

Programs

  • Maple
    a:= ithprime@@7;
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 14 2015
  • Mathematica
    Nest[ Prime, Range[35], 7] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(), q, r, s, t, u, vv); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Extensions

Name clarified by Andrew Howroyd, Nov 17 2024
Previous Showing 41-50 of 270 results. Next