Original entry on oeis.org
4, 6, 9, 12, 18, 21, 26, 28, 34, 42, 45, 52, 57, 60, 65, 74, 81, 84, 91, 95, 98, 106, 112, 119, 128, 133, 135, 141, 143, 147, 165, 170, 177, 180, 192, 195, 203, 209, 214, 220, 228, 231, 244, 246, 250, 253, 267, 284, 288, 290, 295, 301, 303, 316, 323, 329, 336
Offset: 1
a(4) = nonprime(prime(4)) = nonprime(7) = 12.
Let A = primes
A000040, B = nonprimes
A018252. The 2-level compounds are AA =
A006450, AB =
A007821, BA =
A078782, BB =
A102615. The 3-level compounds AAA, AAB, ..., BBB are
A038580,
A049078,
A270792,
A102617,
A270794,
A270796,
A102216.
A339112
Products of primes of semiprime index (A106349).
Original entry on oeis.org
1, 7, 13, 23, 29, 43, 47, 49, 73, 79, 91, 97, 101, 137, 139, 149, 161, 163, 167, 169, 199, 203, 227, 233, 257, 269, 271, 293, 299, 301, 313, 329, 343, 347, 373, 377, 389, 421, 439, 443, 449, 467, 487, 491, 499, 511, 529, 553, 559, 577, 607, 611, 631, 637, 647
Offset: 1
The sequence of terms together with the corresponding multigraphs begins (A..F = 10..15):
1: 149: (34) 313: (36)
7: (11) 161: (11)(22) 329: (11)(23)
13: (12) 163: (18) 343: (11)(11)(11)
23: (22) 167: (26) 347: (29)
29: (13) 169: (12)(12) 373: (1C)
43: (14) 199: (19) 377: (12)(13)
47: (23) 203: (11)(13) 389: (45)
49: (11)(11) 227: (44) 421: (1D)
73: (24) 233: (27) 439: (37)
79: (15) 257: (35) 443: (1E)
91: (11)(12) 269: (28) 449: (2A)
97: (33) 271: (1A) 467: (46)
101: (16) 293: (1B) 487: (2B)
137: (25) 299: (12)(22) 491: (1F)
139: (17) 301: (11)(14) 499: (38)
These primes (of semiprime index) are listed by
A106349.
The strict (squarefree) case is
A340020.
The prime instead of semiprime version:
The nonprime instead of semiprime version:
The squarefree semiprime instead of semiprime version:
A006881 lists squarefree semiprimes.
A037143 lists primes and semiprimes (and 1).
A101048 counts partitions into semiprimes.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320892 lists even-omega non-products of distinct semiprimes.
A320911 lists products of squarefree semiprimes (Heinz numbers of
A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of
A338916).
MM-numbers:
A255397 (normal),
A302478 (set multisystems),
A320630 (set multipartitions),
A302494 (sets of sets),
A305078 (connected),
A316476 (antichains),
A318991 (chains),
A320456 (covers),
A328514 (connected sets of sets),
A329559 (clutters),
A340019 (half-loop graphs).
-
N:= 1000: # for terms up to N
SP:= {}: p:= 1:
for i from 1 do
p:= nextprime(p);
if 2*p > N then break fi;
Q:= map(t -> p*t, select(isprime, {2,seq(i,i=3..min(p,N/p),2)}));
SP:= SP union Q;
od:
SP:= sort(convert(SP,list)):
PSP:= map(ithprime,SP):
R:= {1}:
for p in PSP do
Rp:= {}:
for k from 1 while p^k <= N do
Rpk:= select(`<=`,R, N/p^k);
Rp:= Rp union map(`*`,Rpk, p^k);
od;
R:= R union Rp;
od:
sort(convert(R,list)); # Robert Israel, Nov 03 2024
-
semiQ[n_]:=PrimeOmega[n]==2;
Select[Range[100],FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;!semiQ[PrimePi[p]]]&]
Original entry on oeis.org
5381, 2269733, 17624813, 50728129, 77557187, 131807699, 259336153, 368345293, 440817757, 563167303, 751783477, 1107276647, 1170710369, 1367161723, 1760768239, 2062666783, 2323114841, 2458721501, 2621760397, 2860139341
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058326,
A058327,
A058328,
A093046,
A006450.
A340019
MM-numbers of labeled graphs with half-loops, without isolated vertices.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237, 241, 249
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {} 55: {{2},{3}} 137: {{2,5}}
3: {{1}} 59: {{7}} 139: {{1,7}}
5: {{2}} 65: {{2},{1,2}} 141: {{1},{2,3}}
11: {{3}} 67: {{8}} 143: {{3},{1,2}}
13: {{1,2}} 73: {{2,4}} 145: {{2},{1,3}}
15: {{1},{2}} 79: {{1,5}} 149: {{3,4}}
17: {{4}} 83: {{9}} 155: {{2},{5}}
29: {{1,3}} 85: {{2},{4}} 157: {{12}}
31: {{5}} 87: {{1},{1,3}} 163: {{1,8}}
33: {{1},{3}} 93: {{1},{5}} 165: {{1},{2},{3}}
39: {{1},{1,2}} 101: {{1,6}} 167: {{2,6}}
41: {{6}} 109: {{10}} 177: {{1},{7}}
43: {{1,4}} 123: {{1},{6}} 179: {{13}}
47: {{2,3}} 127: {{11}} 187: {{3},{4}}
51: {{1},{4}} 129: {{1},{1,4}} 191: {{14}}
The version with full loops covering an initial interval is
A320461.
The case covering an initial interval is
A340018.
The version with full loops is
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A330944 counts nonprime prime indices.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],And[SquareFreeQ[#],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
Original entry on oeis.org
52711, 37139213, 326851121, 997525853, 1559861749, 2724711961, 5545806481, 8012791231, 9672485827, 12501968177, 16917026909, 25366202179, 26887732891, 31621854169, 41192432219, 48596930311, 55022031709, 58379844161
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058327,
A058328,
A093046,
A006450.
Original entry on oeis.org
648391, 718064159, 7069067389, 22742734291, 36294260117, 64988430769, 136395369829, 200147986693, 243504973489, 318083817907, 435748987787, 664090238153, 705555301183, 835122557939, 1099216100167, 1305164025929
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058326,
A058328,
A093046,
A006450.
-
Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 10] (* Robert G. Wilson v, Mar 15 2004 *)
A072677
a(n) = prime(prime(n)+1) where prime(k) is the k-th prime.
Original entry on oeis.org
5, 7, 13, 19, 37, 43, 61, 71, 89, 113, 131, 163, 181, 193, 223, 251, 281, 293, 337, 359, 373, 409, 433, 463, 521, 557, 569, 593, 601, 619, 719, 743, 787, 809, 863, 881, 929, 971, 997, 1033, 1069, 1091, 1163, 1181, 1213, 1223, 1301, 1423, 1439, 1451, 1481, 1511, 1531, 1601, 1627, 1693, 1733, 1747, 1789, 1831, 1861, 1931
Offset: 1
Mark Hudson (mrmarkhudson(AT)hotmail.com), Jul 05 2002
a(4)=prime(prime(4)+1), prime(4)=7, hence a(4)=prime(8)=19.
163 is in the sequence because (1) it is a prime number, (2) there are 37 prime numbers smaller than 163 and 37 is also a prime number.
-
with(numtheory): seq(ithprime(ithprime(i)+1),i=1..51);
-
Prime[Prime[Range[60]]+1] (* Harvey P. Dale, Nov 07 2016 *)
-
a(n) = prime(prime(n)+1); \\ Michel Marcus, Nov 17 2017
A050435
a(n) = composite(composite(n)), where composite = A002808, composite numbers.
Original entry on oeis.org
9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1
Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
-
a050435 = a002808 . a002808
a050435_list = map a002808 a002808_list
-- Reinhard Zumkeller, Jan 12 2013
-
Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ]
With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
-
composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler
a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
-
from sympy import composite
def a(n): return composite(composite(n))
print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021
A057847
Primes p whose order of primeness A078442(p) is at least 10.
Original entry on oeis.org
648391, 9737333, 174440041, 718064159, 3657500101, 7069067389, 16123689073, 22742734291, 36294260117, 64988430769, 88362852307, 136395369829, 175650481151, 200147986693, 243504973489, 318083817907, 414507281407
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057849,
A057850,
A057851,
A058332,
A093047.
A057849
Primes p whose order of primeness A078442(p) is at least 7.
Original entry on oeis.org
709, 5381, 52711, 167449, 648391, 1128889, 2269733, 3042161, 4535189, 7474967, 9737333, 14161729, 17624813, 19734581, 23391799, 29499439, 37139213, 38790341, 50728129, 56011909, 59053067, 68425619, 77557187, 87019979, 101146501, 113256643, 119535373, 127065427
Offset: 1
Cf.
A078442,
A000040,
A006450,
A038580,
A049090,
A049203,
A049202,
A057850,
A057851,
A057847,
A058332,
A093047.
-
a:= ithprime@@7;
seq(a(n), n=1..30); # Alois P. Heinz, Jun 14 2015
-
Nest[ Prime, Range[35], 7] (* Robert G. Wilson v, Mar 15 2004 *)
-
list(lim)=my(v=List(), q, r, s, t, u, vv); forprime(p=2, lim, if(isprime(q++) && isprime(r++) && isprime(s++) && isprime(t++) && isprime(u++) && isprime(vv++), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017
Comments