cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A347712 Number of compositions (ordered partitions) of n into at most 5 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 3, 4, 6, 4, 8, 13, 5, 11, 16, 12, 22, 10, 16, 37, 14, 20, 35, 32, 33, 20, 44, 46, 32, 43, 40, 76, 46, 18, 83, 68, 47, 63, 71, 88, 78, 46, 72, 129, 65, 63, 140, 104, 85, 73, 109, 150, 90, 95, 138, 176, 116, 54, 184, 181, 96, 159, 156, 172, 182, 74
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..5} A337165(n,k). - Alois P. Heinz, Sep 10 2021

A347713 Number of compositions (ordered partitions) of n into at most 6 squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 4, 6, 10, 8, 13, 20, 11, 22, 32, 22, 40, 31, 37, 74, 32, 50, 92, 64, 80, 74, 106, 122, 79, 126, 136, 166, 138, 98, 248, 188, 123, 236, 228, 258, 232, 192, 309, 350, 219, 266, 464, 340, 289, 379, 410, 480, 335, 400, 596, 542, 414, 394, 721, 626
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 10 2021

Keywords

Crossrefs

Formula

a(n) = Sum_{k=0..6} A337165(n,k). - Alois P. Heinz, Sep 10 2021

A375731 a(n) is the number of partitions of n having a square number of parts whose sum of squares is a square.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 4, 2, 2, 7, 4, 4, 7, 7, 6, 9, 12, 9, 21, 21, 19, 26, 30, 32, 43, 54, 54, 64, 87, 85, 119, 128, 146, 174, 205, 213, 281, 324, 368, 420, 503, 531, 688, 760, 837, 992, 1174, 1252, 1535, 1705, 1931, 2236, 2619, 2821, 3402, 3769, 4272
Offset: 0

Views

Author

Felix Huber, Aug 28 2024

Keywords

Examples

			a(13) counts the 4 partitions [1, 1, 1, 1, 1, 1, 1, 3, 3] with 9 = 3^2 parts and 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 = 5^2, [1, 4, 4, 4] with 2^2 parts and 1^2 + 4^2 + 4^2 + 4^2 = 7^2, [2, 2, 4, 5] with 4 = 2^2 parts and 2^2 + 2^2 + 4^2 + 5^2 = 7^2, [13] with 1 = 1^2 part and 13^2 = 13^2.
		

Crossrefs

Programs

  • Maple
    # first Maple program to calculate the sequence:
    A375731:=proc(n) local a,i,j; a:=0; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then a:=a+1 fi od; return a end proc; seq(A375731(n),n=0..63);
    # second Maple program to calculate the partitions:
    A375731part:=proc(n) local L,i,j;L:=[]; for i in combinat:-partition(n) do if issqr(numelems(i)) and issqr(add(i[j]^2,j=1..nops(i))) then L:=[op(L),i] fi od; return op(L) end proc; A375731part(13);
  • PARI
    a(n) = my(nb=0); forpart(p=n, if (issquare(#p) && issquare(norml2(Vec(p))), nb++)); nb; \\ Michel Marcus, Aug 30 2024

Formula

1 <= a(n) <= A240127(n).

A281155 Expansion of (Sum_{k>=2} x^(k^2))^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 3, 0, 0, 1, 0, 6, 0, 0, 0, 3, 3, 0, 3, 0, 6, 0, 0, 3, 0, 3, 3, 6, 0, 0, 1, 6, 6, 0, 0, 0, 6, 0, 6, 6, 0, 3, 0, 6, 6, 0, 0, 6, 3, 3, 3, 6, 6, 0, 3, 0, 6, 1, 3, 12, 6, 0, 0, 6, 3, 6, 6, 0, 3, 0, 3, 15, 6, 0, 0, 6, 12, 0, 3, 3, 6, 6, 0, 12, 3, 0, 6, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 3 squares > 1.

Examples

			G.f. = x^12 + 3*x^17 + 3*x^22 + 3*x^24 + x^27 + 6*x^29 + 3*x^33 + 3*x^34 + 3*x^36 + ...
a(17) = 3 because we have [9, 4, 4], [4, 9, 4] and [4, 4, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Sum[x^k^2, {k, 2, nmax}]^3, {x, 0, nmax}], x]
    CoefficientList[Series[(-1 - 2 x + EllipticTheta[3, 0, x])^3/8, {x, 0, 105}], x]

Formula

G.f.: (Sum_{k>=2} x^(k^2))^3.
G.f.: (1/8)*(-1 - 2*x + theta_3(0,x))^3, where theta_3 is the 3rd Jacobi theta function.

A281704 Expansion of Sum_{i>=1} x^(i^2) / (1 - Sum_{j>=1} x^(j^2))^2.

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 23, 35, 55, 87, 134, 202, 305, 463, 700, 1049, 1565, 2334, 3478, 5168, 7654, 11314, 16705, 24632, 36260, 53295, 78237, 114728, 168059, 245916, 359483, 525021, 766144, 1117107, 1627587, 2369609, 3447549, 5012588, 7283577, 10577198, 15351519, 22268890, 32286666, 46788056, 67770831
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2017

Keywords

Comments

Total number of parts in all compositions (ordered partitions) of n into squares (A000290).

Examples

			a(6) = 15 because we have [4, 1, 1], [1, 4, 1], [1, 1, 4], [1, 1, 1, 1, 1, 1] and 3 + 3 + 3 + 6 = 15.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1, 0], add(
          (p-> p+[0, p[1]])(b(n-j^2)), j=1..isqrt(n)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=1..45);  # Alois P. Heinz, Aug 07 2019
  • Mathematica
    nmax = 45; Rest[CoefficientList[Series[Sum[x^i^2, {i, 1, nmax}]/(1 - Sum[x^j^2, {j, 1, nmax}])^2, {x, 0, nmax}], x]]
    nmax = 45; Rest[CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)/(2 (1 + (1 - EllipticTheta[3, 0, x])/2)^2), {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i^2) / (1 - Sum_{j>=1} x^(j^2))^2.
a(n) = Sum_{k=0..n} k * A337165(n,k). - Alois P. Heinz, Feb 03 2021

A301335 a(n) = [x^n] 1/(1 + (1/2)*n*(1 - theta_3(x))), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 4, 27, 260, 3175, 47304, 833147, 16941120, 390611331, 10070060200, 287028156162, 8962583345856, 304255011200647, 11156593415089808, 439452231820920000, 18505340390664634384, 829599437871129843839, 39447684087807950938908, 1983038000428208822539998, 105080571577382659860160800
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 18 2018

Keywords

Comments

Number of compositions (ordered partitions) of n into squares of n kinds.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + (1/2) n (1 - EllipticTheta[3, 0, x])), {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[1/(1 - n Sum[x^k^2, {k, 1, n}]), {x, 0, n}], {n, 0, 20}]

Formula

a(n) = [x^n] 1/(1 - n*Sum_{k>=1} x^(k^2)).
a(n) ~ n^n * (1 + 1/n^2 - 3/n^3 + 1/(2*n^4) - 13/(2*n^5) + 127/(6*n^6) - 4/n^7 + 335/(8*n^8) - 665/(4*n^9) + 337/(15*n^10) + ...). - Vaclav Kotesovec, Mar 19 2018

A331918 Number of compositions (ordered partitions) of n into distinct odd squares.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 1, 2, 6, 24, 0, 0, 0, 0, 0, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 01 2020

Keywords

Examples

			a(35) = 6 because we have [25, 9, 1], [25, 1, 9], [9, 25, 1], [9, 1, 25], [1, 25, 9] and [1, 9, 25].
		

Crossrefs

Programs

  • Maple
    N:= 200: # for a(0)..a(N)
    G:= mul(1+t*x^(i^2),i=1..floor(sqrt(N)),2):
    F:= proc(n) local R, k, v;
      R:= coeff(G,x,n);
      add(k!*coeff(R,t,k),k=1..degree(R,t))
    end proc:
    F(0):= 1:
    map(F, [$0..N]); # Robert Israel, Feb 03 2020

A347590 Number of compositions (ordered partitions) of n^2 into at most n squares.

Original entry on oeis.org

1, 1, 1, 4, 2, 20, 188, 1031, 8777, 62528, 437160, 4185739, 38642386, 383969125, 4149154916, 45160025119, 514181220266, 6133093344169, 75135177511922, 962729735639323, 12745694628358530, 173304634479902187, 2433186864257121180, 35030916937968941062
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 08 2021

Keywords

Crossrefs

A353180 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)!).

Original entry on oeis.org

1, 1, 2, 6, 25, 130, 810, 5880, 48790, 455491, 4725020, 53915730, 671141130, 9050528630, 131437406100, 2045160117000, 33944105995801, 598591246152934, 11176863039391538, 220287874849834596, 4570225746232479690, 99557506547622369750, 2272028399094852806100
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 23, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2)!))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), binomial(i, j^2)*v[i-j^2+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..floor(sqrt(n))} binomial(n,k^2) * a(n-k^2).

A353184 Expansion of e.g.f. 1/(1 - Sum_{k>=1} x^(k^2) / (k^2)).

Original entry on oeis.org

1, 1, 2, 6, 30, 180, 1260, 10080, 93240, 1015560, 12146400, 158004000, 2226193200, 34162128000, 565750785600, 10034584560000, 190820565936000, 3845407181616000, 81995523626016000, 1844123531009760000, 43689721287532320000, 1086745683839175360000
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[(k^2 - 1)! * Binomial[n, k^2] * a[n - k^2], {k, 1, Floor@Sqrt[n]}]; Array[a, 22, 0] (* Amiram Eldar, Apr 30 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, sqrtint(N), x^k^2/(k^2)))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, sqrtint(i), (j^2-1)!*binomial(i, j^2)*v[i-j^2+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..floor(sqrt(n))} (k^2-1)! * binomial(n,k^2) * a(n-k^2).
Previous Showing 31-40 of 56 results. Next