cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A328033 Numbers m that divide 7^m + 6.

Original entry on oeis.org

1, 13, 793, 1943, 150341, 183793, 2348789, 26052527, 27982637, 54789869, 1588344433, 3928538029, 8115802931, 16936276919, 17786709541, 47778790033, 973094452518029
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 02 2019

Keywords

Comments

Conjecture: For k > 1, k^m == 1 - k (mod m) has infinite number of positive solutions.
Also includes 2073273696480171732497. - Giovanni Resta, Oct 04 2019

Crossrefs

Solutions to k^m == 1-k (mod m): A006521 (k = 2), A015973 (k = 3), A327840 (k = 4), A123047 (k = 5), A327943 (k = 6), this sequence (k = 7), A327468 (k = 8).
Cf. A253210 (7^n + 6).

Programs

  • Magma
    [1] cat [n: n in [1..10^8] | Modexp(7, n, n) + 6 eq n];

Extensions

a(12)-a(16) from Giovanni Resta, Oct 04 2019
a(17) from Max Alekseyev, Feb 07 2024

A357125 Positive integers n such that 2^(n-3) == -1 (mod n).

Original entry on oeis.org

1, 5, 4553, 46777, 82505, 4290773, 4492205, 4976429, 21537833, 21549349, 51127261, 56786089, 60296573, 80837773, 87761789, 94424465, 138644873, 168865001, 221395541, 255881453, 297460453, 305198249, 360306365, 562654205, 635374253, 673867253, 808333573, 1164757553, 1210317349
Offset: 1

Views

Author

Max Alekseyev, Sep 13 2022

Keywords

Comments

Also, odd integers n dividing 2^n + 8.
Some large terms: 5603900696716667005, 446661376165868432471569407934747098747181600670953926245, 1533278864164902082788937853692280620552397221686019535813.

Crossrefs

The odd terms of A245319.

Programs

  • Mathematica
    Select[Range[2155*10^4],PowerMod[2,#-3,#]==#-1&]//Quiet (* The program generates the first 10 terms of the sequence. *) (* Harvey P. Dale, Feb 08 2025 *)

A016057 Pseudo-powers to base 3: numbers k that are not powers of 3 such that k divides 2^k + 1.

Original entry on oeis.org

171, 513, 1539, 3249, 4617, 9747, 13203, 13851, 29241, 39609, 41553, 61731, 87723, 97641, 118827, 124659, 185193, 250857, 263169, 292923, 354537, 356481, 373977, 555579, 752571, 789507, 878769, 1063611, 1069443, 1121931, 1172889, 1666737, 1855179, 2152089, 2257713
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A006521.

Programs

  • Mathematica
    Do[ If[ PowerMod[ 2, n, n ] + 1 == n, If[ ! IntegerQ[ Log[ 3, n ] ], Print[ n ] ] ], {n, 1, 4* 10^6} ]

Extensions

Offset corrected by Amiram Eldar, Jul 04 2021

A066807 Integers of the form (2^k+1)/k.

Original entry on oeis.org

3, 3, 57, 4971027, 29850020237398251227313, 17503832475167772961878049926333027042428946479619, 58167804601757508792865761341330650726830745576152064464908846133090363
Offset: 1

Views

Author

Benoit Cloitre, Jan 19 2002

Keywords

Comments

The next term a(8) has 152 digits and a(9) has 217 digits. - Harvey P. Dale, Oct 20 2014

Crossrefs

Cf. A006521.

Programs

  • Mathematica
    Select[Table[(2^n+1)/n,{n,300}],IntegerQ] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (type(v = (2^n+1)/n) == "t_INT", print1(v, ", ")););} \\ Michel Marcus, Nov 20 2013

Formula

a(n) == 0 (mod 3).

A069226 a(n) = gcd(n, 2^n + 1).

Original entry on oeis.org

2, 1, 1, 3, 1, 1, 1, 1, 1, 9, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 27, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 25, 3, 1, 1, 1, 11, 1, 3, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 17, 3, 5, 1, 1, 1, 1, 3, 1, 1, 13, 1, 1, 81, 1, 1, 1, 1, 1, 3, 1, 1, 5, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1
Offset: 0

Views

Author

Vladeta Jovovic, Apr 12 2002

Keywords

Comments

First occurrence of n: a(1)=1, a(3)=3, a(10)=5, a(9)=9, a(55)=11, a(78)=13, a(68)=17, a(50)=25, a(27)=27, a(406)=29, a(165)=33, a(666)=37, a(301)=43, a(1378)=53, a(1711)=59, a(390)=65, a(81)=81, a(3403)=83, a(2328)=97, a(495)=99, ... - R. J. Mathar, Dec 14 2016

Crossrefs

Cf. A006521 (fixed points), A014491, A049095, A049096, A060444.

Programs

  • Mathematica
    Table[GCD[n,2^n+1],{n,100}] (* Harvey P. Dale, Dec 12 2012 *)
  • PARI
    A069226(n) = gcd(n, 1+(1<Antti Karttunen, Jan 15 2025

Extensions

Term a(0) = 2 prepended by Antti Karttunen, Jan 15 2025

A093547 Numbers k such that k divides 3^(k^2) - 1.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 68, 80, 100, 110, 128, 136, 160, 164, 200, 220, 250, 256, 272, 320, 328, 340, 400, 440, 500, 512, 544, 550, 610, 640, 656, 680, 772, 800, 820, 880, 1000, 1010, 1024, 1088, 1100, 1156, 1210, 1220, 1250, 1280, 1312, 1360
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 31 2004

Keywords

Comments

This sequence is closed under multiplication, i.e., if x and y are terms then so is x*y.
A067945 is a subsequence of this sequence. A067945 is also closed under multiplication. In fact if m is an integer and k is a natural number then the sequence " n divides m^(n^k) - 1 " is a subsequence of the sequence " n divides m^n^(k+1)- 1 " and both are closed under multiplication.

Crossrefs

Programs

  • Mathematica
    v={};Do[If[IntegerQ[(3^n^2-1)/n], v=Append[v, n];Print[v]], {n, 2500}]
    Select[Range[1400],Divisible[3^#^2-1,#]&] (* Harvey P. Dale, Nov 04 2015 *)
  • PARI
    isok(k) = Mod(3, k)^(k^2) == 1; \\ Amiram Eldar, May 26 2024

A327468 Numbers m that divide 8^m + 7.

Original entry on oeis.org

1, 3, 5, 25, 519, 290502305, 821808425, 979288025, 982989263, 25783323897, 27771237541, 31045665345, 65130752425, 3708883906025, 15079242289703, 973336048301405
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 04 2019

Keywords

Comments

Conjecture: For k > 1, k^m == 1-k (mod m) has an infinite number of positive solutions.
Integer m not divisible by 3 is a term if and only if 3m is a term of A240941. - Max Alekseyev, Feb 07 2024
Also terms 930486448009391617725 and 21036656390681764555645540794214294457925. - Giovanni Resta, Oct 04 2019
Other terms 71245661271703622047, 7093208961478946798805, 7807963392818324067361574236385. - Max Alekseyev, Feb 07 2024

Crossrefs

Solutions to k^m == 1-k (mod m): 1 (k = 1), A006521 (k = 2), A015973 (k = 3), A327840 (k = 4), A123047 (k = 5), A327943 (k = 6), A328033 (k = 7), this sequence (k = 8).

Programs

  • Magma
    [m: m in [1..7] | (8^m + 7) mod m eq 0] cat [m: m in [8..10^8] | Modexp(8, m, m) + 7 eq m]; // Jon E. Schoenfield, Oct 05 2019
  • PARI
    isok(n) = Mod(8, n)^n==-7; \\ Michel Marcus, Oct 05 2019
    

Extensions

a(10)-a(13) from Giovanni Resta, Oct 04 2019
a(14)-a(16) from Max Alekseyev, Feb 07 2024

A093665 Numbers k that divide 2^(k^3) + 1.

Original entry on oeis.org

1, 3, 9, 27, 57, 81, 171, 243, 513, 729, 1083, 1467, 1539, 2187, 3249, 4401, 4617, 6561, 9747, 13131, 13203, 13851, 19683, 20577, 27873, 29241, 32547, 39393, 39609, 41553, 59049, 61731, 83619, 87723, 97641, 118179, 118827, 124659, 177147, 185193
Offset: 1

Views

Author

Robert G. Wilson v, Apr 03 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 249488], PowerMod[2, #^3, # ] == # - 1 &]

A096197 a(n) = (1+prime(n)) mod n.

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 4, 4, 6, 0, 10, 2, 3, 2, 3, 6, 9, 8, 11, 12, 11, 14, 15, 18, 23, 24, 23, 24, 23, 24, 4, 4, 6, 4, 10, 8, 10, 12, 12, 14, 16, 14, 20, 18, 18, 16, 24, 32, 32, 30, 30, 32, 30, 36, 38, 40, 42, 40, 42, 42, 40, 46, 56, 56, 54, 54, 64, 66, 3, 0, 70, 0, 3, 4, 5, 4, 5, 8, 7, 10, 15
Offset: 1

Views

Author

Labos Elemer, Jul 26 2004

Keywords

Comments

Graph is similar to that of A004648.

Crossrefs

Programs

  • Magma
    [(NthPrime(n)+1) mod(n): n in [1..90]]; // Vincenzo Librandi, Sep 11 2014
    
  • Mathematica
    Table[Mod[Prime[n] + 1, n], {n, 100}] (* Vincenzo Librandi, Sep 11 2014 *)
  • PARI
    lista(nn) = {forprime(p=2, n, print1((p+1) % primepi(p), ", "););} \\ Michel Marcus, Sep 11 2014

A289258 Prime factors of numbers in A289257.

Original entry on oeis.org

3, 19, 163, 1459, 8803, 17497, 52489, 78787, 164617, 370387
Offset: 1

Views

Author

Michel Marcus, Jun 29 2017

Keywords

Comments

Kalmynin conjectures that this sequence is infinite.
I have some doubts about terms 17497, 52489, 164617 that are == 1 (mod 8).

Crossrefs

Previous Showing 31-40 of 48 results. Next