cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 198 results. Next

A155513 Lesser of emirps (pairs) with digits 0 and 1 only.

Original entry on oeis.org

10011101, 100100111, 1000110101, 1001001011, 1010001101, 1010011111, 10010100101, 10100000011, 10100000111, 10111001011, 100000010101, 100000011011, 100101110111, 100101111001, 100110101011, 100110101111
Offset: 1

Views

Author

Lekraj Beedassy, Jan 23 2009

Keywords

Crossrefs

Extensions

First missed entry added. Lekraj Beedassy, May 30 2009
More terms from Sean A. Irvine, Mar 04 2010

A156793 Indices of primes whose reversal is a different prime.

Original entry on oeis.org

6, 7, 11, 12, 20, 21, 22, 25, 28, 30, 35, 37, 39, 41, 46, 64, 68, 69, 72, 77, 126, 127, 130, 131, 132, 133, 135, 136, 155, 159, 160, 162, 163, 164, 166, 167, 169, 172, 173, 174, 178, 180, 182, 184, 185, 186, 190, 191, 194, 196, 197, 198, 199, 200, 201, 202, 203
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 16 2009

Keywords

Comments

Indices of primes in A006567.

Examples

			If prime(n=6)=13(1<3) and 31=prime, then 6=a(1). If prime(n=7)=17(1<7) and 71=prime, then 7=a(2). If prime(n=11)=31(3>1) and 13=prime, then 11=a(3), etc.
		

Crossrefs

Cf. A006567.

Programs

  • Mathematica
    difpQ[n_]:=Module[{idn=IntegerDigits[n],ridn},ridn=Reverse[idn];idn!=ridn && PrimeQ[FromDigits[ridn]]]; PrimePi/@ Select[ Prime[ Range[ 250]], difpQ] (* Harvey P. Dale, Nov 23 2011 *)

Extensions

45 replaced by 46. 127, 131, 136, 155, 159 inserted, etc. - R. J. Mathar, Feb 26 2009

A168159 Distance of the least reversible n-digit prime from 10^(n-1).

Original entry on oeis.org

1, 1, 1, 9, 7, 49, 33, 169, 7, 7, 207, 237, 91, 313, 261, 273, 79, 49, 2901, 51, 441, 193, 9, 531, 289, 1141, 67, 909, 331, 753, 2613, 657, 49, 4459, 603, 1531, 849, 2049, 259, 649, 2119, 1483, 63, 6747, 519, 3133, 937, 1159, 1999, 6921, 2949, 613, 4137, 1977, 31
Offset: 1

Views

Author

M. F. Hasler, Nov 21 2009

Keywords

Comments

A (much) more compact form of A114018 (cf. formula). Since this sequence and A114018 refer to "reversible primes" (A007500), while A122490 seems to use "emirps" (A006567), a(n+1) differs from A122490(n) iff 10^n+1 is prime <=> a(n+1)=1 <=> A114018(n)=10^n+1.

Programs

  • Mathematica
    Table[p = NextPrime[y = 10^(n - 1)]; While[! PrimeQ[FromDigits[Reverse[IntegerDigits[p]]]], p = NextPrime[p]]; p - y, {n, 55}] (* Jayanta Basu, Aug 09 2013 *)
  • PARI
    for(x=1,1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)),"-1..1")))),);print1(x-10^ (#Str(x)-1),", "); x=10^#Str(x)-1)
    
  • Python
    from sympy import isprime
    def c(n): return isprime(n) and isprime(int(str(n)[::-1]))
    def a(n): return next(p-10**(n-1) for p in range(10**(n-1), 10**n) if c(p))
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Jun 27 2022

Formula

a(n)=A114018(n)-10^(n-1)

A173594 Near-repdigit emirps.

Original entry on oeis.org

113, 199, 311, 337, 733, 991, 1151, 1181, 1511, 1811, 3343, 3373, 3433, 3733, 7177, 7577, 7717, 7757, 11161, 16111, 77797, 79777, 98999, 99989, 111119, 111211, 112111, 323333, 333323, 333337, 333433, 334333, 733333, 777787, 777877, 778777, 787777, 911111
Offset: 1

Views

Author

Lekraj Beedassy, Feb 22 2010

Keywords

Comments

Entries of A164937 that are emirps (A006567), i.e., A164937 INTERSECTION A006567.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[26,75000]],!PalindromeQ[#]&&PrimeQ[IntegerReverse[ #]] && Count[ DigitCount[#],0]==8&&MemberQ[DigitCount[#],1]&] (* Harvey P. Dale, Sep 17 2021 *)

A175215 The smaller member of a twin prime pair in which both primes are emirps.

Original entry on oeis.org

71, 1031, 1151, 1229, 3299, 3371, 3389, 3467, 3851, 7457, 7949, 9011, 9437, 10007, 10067, 10457, 10889, 11159, 11699, 11717, 11777, 11969, 12071, 12107, 13709, 13757, 14447, 14549, 14591, 15731, 16451, 17207, 17681, 17747, 17909, 18911, 19421, 19541
Offset: 1

Views

Author

Lekraj Beedassy, Mar 06 2010

Keywords

Comments

Subsequence of A001359 and of A006567.

Crossrefs

Programs

  • Magma
    emirp:=func; [p:p in PrimesUpTo(20000)| emirp(p) and emirp(p+2)]; // Marius A. Burtea, Dec 17 2019
  • Maple
    read("transforms") ; isA001359 := proc(n) isprime(n) and isprime(n+2) ; end proc:
    isA006567 := proc(n) local r ; r := digrev(n) ; isprime(n) and isprime(r) and n<> r ; end proc:
    isA175215 := proc(n) isA001359(n) and isA006567(n) and isA006567(n+2) ; end proc:
    for i from 1 to 10000 do p := ithprime(i) ; if isA175215(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Mar 16 2010
  • Mathematica
    Do[IR=IntegerReverse;Q=PrimeQ;If[Q[n]&&Q[n+2]&&Q[IR[n]]&&PrimeQ[IR[n+2]]&&!n==IR[n]&&!(n+2)==IR[n+2],Print[n]],{n,5,10^5,6}] (* Metin Sariyar, Dec 17 2019 *)

Extensions

11699 inserted, 14921 -> 19421 corrected by R. J. Mathar, Mar 16 2010

A179032 Emirps whose only prime digits are one or more 2's.

Original entry on oeis.org

1021, 1201, 1229, 1249, 1429, 9029, 9209, 9221, 9241, 9421, 10429, 11621, 12109, 12119, 12149, 12241, 12269, 12289, 12491, 12611, 12619, 12641, 12689, 12809, 12829, 12841, 12919, 14029, 14221, 14621, 14629, 14821, 14929, 16249, 16829
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2000]],!PalindromeQ[#]&&PrimeQ[IntegerReverse[#]] && Union[ Select[ IntegerDigits[ #],PrimeQ]]=={2}&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 06 2020 *)

Extensions

Terms confirmed by Ray Chandler, Jul 13 2010

A179033 Emirps with a single 2 as the only prime digit.

Original entry on oeis.org

1021, 1201, 1249, 1429, 9029, 9209, 9241, 9421, 10429, 11621, 12109, 12119, 12149, 12491, 12611, 12619, 12641, 12689, 12809, 12841, 12919, 14029, 14621, 14629, 14821, 14929, 16249, 16829, 18269, 19219, 19249, 19421, 90121, 90821, 91121
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2010

Keywords

Examples

			Note that 2 and 929 are not emirps because they are palindromes.
		

Crossrefs

Programs

  • Maple
    Dmax:= 6: # to get all terms with up to Dmax digits
    Res:= NULL:
    npd:= [0,1,4,6,8,9]:
    for dd from 3 to Dmax do
      R:= [seq(seq([seq(npd[j+1],j=convert(6*x+j,base,6))],
        x=[$6^(dd-3) .. 2*6^(dd-3)-1, $5*6^(dd-3)..6^(dd-2)-1]),j=[1,5])];
      for p from 2 to dd-1 do
        for r in R do
          x:= [op(r[1..p-1]),2,op(r[p..-1])];
          v1:= add(x[i]*10^(i-1),i=1..dd);
          v2:= add(x[-i]*10^(i-1),i=1..dd);
          if v1 < v2 and isprime(v1) and isprime(v2) then Res:= Res,v1,v2; if min(v1,v2) < 10^3  then print(dd,p,r,x,v1,v2) fi fi
    od od od:
    sort([Res]); # Robert Israel, Jun 02 2016
  • Mathematica
    emrp[n_]:=Module[{idn=IntegerDigits[n],rev},rev=Reverse[idn];PrimeQ[FromDigits[rev]]&&rev!=idn]
    only2[n_]:=DigitCount[n,10,{3,5,7}]=={0,0,0}&&DigitCount[n,10,2]==1
    Select[Select[Prime[Range[10000]],emrp],only2] (* Harvey P. Dale, Jan 22 2011 *)

Extensions

Terms confirmed by Ray Chandler, Jul 13 2010
Definition improved by Harvey P. Dale, Jul 17 2010

A179034 Emirps whose only prime digits are 3's.

Original entry on oeis.org

13, 31, 113, 311, 389, 983, 1031, 1033, 1103, 1193, 1301, 1381, 1399, 1439, 1831, 1913, 1933, 3011, 3019, 3049, 3083, 3089, 3109, 3163, 3169, 3191, 3301, 3319, 3343, 3389, 3391, 3433, 3463, 3469, 3613, 3643, 3803, 3889, 3911, 9013, 9103, 9133, 9341
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2010

Keywords

Crossrefs

Programs

  • Mathematica
    em3Q[n_]:=Module[{idn=IntegerDigits[n],ridn},ridn=Reverse[idn]; idn!= ridn&&PrimeQ[FromDigits[ridn] && Count[idn,2] == Count[idn,5] == Count[idn,7] == 0&&Count[idn,3]>0]]; Select[Prime[Range[1200]],em3Q] (* Harvey P. Dale, Nov 30 2012 *)

Extensions

Corrected by Ray Chandler, Jul 13 2010

A182721 Mountain emirps.

Original entry on oeis.org

1231, 1321, 1381, 1471, 1741, 1831, 12491, 12641, 12841, 13591, 13751, 13781, 13841, 14591, 14621, 14821, 14831, 14891, 15731, 15791, 18731, 19421, 19531, 19541, 19751, 19841, 123731, 123821, 124951, 124981, 125641, 125651, 125791, 125821, 125941, 126761, 126851
Offset: 1

Views

Author

Omar E. Pol, Dec 21 2010

Keywords

Comments

Intersection of emirps A006567 and mountain numbers A134941.
The smallest mountain emirp 1231 and other terms of this sequence was mentioned by Loungrides in Prime Curios! (see link).
Question: How many are there?
There are 602 such terms. - Michael S. Branicky, Dec 31 2021

Examples

			Illustration of a(11) = 13751 as a mountain emirp:
  . . . . .
  . . . . .
  . . 7 . .
  . . . . .
  . . . 5 .
  . . . . .
  . 3 . . .
  . . . . .
  1 . . . 1
		

Crossrefs

Programs

  • Python
    # uses A134941()
    from sympy import isprime
    def is_emirp(n):
        if not isprime(n): return False
        revn = int(str(n)[::-1])
        return n != revn and isprime(revn)
    print([k for k in A134941() if is_emirp(k)]) # Michael S. Branicky, Dec 31 2021

Formula

A006567 INTERSECT A134941.

Extensions

More terms from Nathaniel Johnston, Dec 29 2010
Terms a(31) and beyond from Michael S. Branicky, Dec 31 2021

A210548 Larger of emirp pairs whose members have prime digital products.

Original entry on oeis.org

31, 71, 311, 1511, 112111, 1171111, 11131111, 71111111, 131111111, 1115111111, 31111111111, 131111111111111111, 1151111111111111111111111111, 11111111111711111111111111111, 131111111111111111111111111111111111111
Offset: 1

Views

Author

Lekraj Beedassy, Mar 22 2012

Keywords

Comments

Beyond the first two terms, a(n) is the intersection of A173596 and A046703.

Crossrefs

Extensions

More terms from Alois P. Heinz, Mar 22 2012
Previous Showing 91-100 of 198 results. Next