cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A292327 p-INVERT of the Fibonacci sequence (A000045), where p(S) = (1 - S)^2.

Original entry on oeis.org

2, 5, 14, 38, 102, 271, 714, 1868, 4858, 12569, 32374, 83058, 212350, 541219, 1375570, 3487384, 8821170, 22266413, 56098206, 141087934, 354268502, 888238903, 2223968666, 5561234916, 13889778218, 34652529473, 86361653126, 215021205770, 534861620718
Offset: 0

Views

Author

Clark Kimberling, Sep 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x - x^2); p = (1 - s)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000045 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A292327 *)

Formula

G.f.: -(2 + x)*(-1 + 2*x)/(-1 + 2*x + x^2)^2.
a(n) = 4*a(n-1) - 2*a(n-2) - 4*a(n-3) - a(n-4) for n >= 5.
a(n) = A006645(n+1) +2*A000129(n+1). - R. J. Mathar, Jul 08 2022

A201972 Triangle T(n,k), read by rows, given by (2,1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 12, 28, 20, 4, 29, 88, 94, 40, 5, 70, 262, 372, 244, 70, 6, 169, 752, 1333, 1184, 539, 112, 7, 408, 2104, 4472, 5016, 3144, 1064, 168, 8, 985, 5776, 14316, 19408, 15526, 7344, 1932, 240, 9
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2011

Keywords

Comments

Diagonal sums: A201967(n), row sums: A000302(n) (powers of 4).

Examples

			Triangle begins:
    1;
    2,   2;
    5,   8,    3;
   12,  28,   20,    4;
   29,  88,   94,   40,   5;
   70, 262,  372,  244,  70,   6;
  169, 752, 1333, 1184, 539, 112, 7;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or  k>n  then 0
        else 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 8}, CoefficientList[CoefficientList[Series[1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if(nMichel Marcus, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0 and n==0): return 1
        else: return 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020

Formula

G.f.: 1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A000302(n), A138395(n), A057084(n) for x = -1, 0, 1, 2, 3, respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000027(n), A000302(n), A090018(n), A057091(n) for x = 0, 1, 2, 3, respectively.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0) = 1, T(n,k) = 0 if k < 0 or if n < k.

Extensions

a(40) corrected by Georg Fischer, Feb 17 2020

A261056 Expansion of ( 2-x^2 ) / (x^2+2*x-1)^2 .

Original entry on oeis.org

2, 8, 27, 84, 248, 708, 1973, 5400, 14574, 38896, 102863, 269964, 703972, 1825612, 4711785, 12110064, 31010266, 79148184, 201420163, 511233156, 1294489296, 3270662036, 8247316765, 20758752648, 52163239622, 130875524096, 327893289783, 820410399804, 2050189683644
Offset: 0

Views

Author

R. J. Mathar, Aug 08 2015

Keywords

Comments

2nd column of A210637.

Crossrefs

Cf. A210637.

Programs

  • Mathematica
    CoefficientList[Series[(2-x^2)/(x^2+2*x-1)^2,{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-4,-1},{2,8,27,84},40] (* Harvey P. Dale, Feb 24 2017 *)

Formula

a(n) = 2*A006645(n+2) -A006645(n).

A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).

Original entry on oeis.org

1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Fibonacci polynomials.
Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

Crossrefs

Programs

  • Magma
    [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
  • PARI
    concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
    

A317450 a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).

Original entry on oeis.org

1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1

Views

Author

Rigoberto Florez, Aug 26 2018

Keywords

Comments

Discriminant of Pell polynomials.
Pell polynomials are defined as P(0)=0, P(1)=1 and P(n)=2xP(n-1)+P(n-2) for n>1.

Crossrefs

Programs

  • Mathematica
    Array[(-1)^((#-2)*(#-1)/2)* 2^((#-1)^2)*#^(#-3)&,15]
Previous Showing 11-15 of 15 results.