A292327
p-INVERT of the Fibonacci sequence (A000045), where p(S) = (1 - S)^2.
Original entry on oeis.org
2, 5, 14, 38, 102, 271, 714, 1868, 4858, 12569, 32374, 83058, 212350, 541219, 1375570, 3487384, 8821170, 22266413, 56098206, 141087934, 354268502, 888238903, 2223968666, 5561234916, 13889778218, 34652529473, 86361653126, 215021205770, 534861620718
Offset: 0
-
z = 60; s = x/(1 - x - x^2); p = (1 - s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292327 *)
A201972
Triangle T(n,k), read by rows, given by (2,1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 2, 5, 8, 3, 12, 28, 20, 4, 29, 88, 94, 40, 5, 70, 262, 372, 244, 70, 6, 169, 752, 1333, 1184, 539, 112, 7, 408, 2104, 4472, 5016, 3144, 1064, 168, 8, 985, 5776, 14316, 19408, 15526, 7344, 1932, 240, 9
Offset: 0
Triangle begins:
1;
2, 2;
5, 8, 3;
12, 28, 20, 4;
29, 88, 94, 40, 5;
70, 262, 372, 244, 70, 6;
169, 752, 1333, 1184, 539, 112, 7;
-
T:= proc(n, k) option remember;
if k=0 and n=0 then 1
elif k<0 or k>n then 0
else 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
-
With[{m = 8}, CoefficientList[CoefficientList[Series[1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k) = if(nMichel Marcus, Feb 17 2020
-
@CachedFunction
def T(n, k):
if (k<0 or k>n): return 0
elif (k==0 and n==0): return 1
else: return 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020
A261056
Expansion of ( 2-x^2 ) / (x^2+2*x-1)^2 .
Original entry on oeis.org
2, 8, 27, 84, 248, 708, 1973, 5400, 14574, 38896, 102863, 269964, 703972, 1825612, 4711785, 12110064, 31010266, 79148184, 201420163, 511233156, 1294489296, 3270662036, 8247316765, 20758752648, 52163239622, 130875524096, 327893289783, 820410399804, 2050189683644
Offset: 0
-
CoefficientList[Series[(2-x^2)/(x^2+2*x-1)^2,{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-4,-1},{2,8,27,84},40] (* Harvey P. Dale, Feb 24 2017 *)
A317403
a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3).
Original entry on oeis.org
1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A168561,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
-
[(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018
-
Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&,20]
-
concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018
A317450
a(n)=(-1)^((n-2)*(n-1)/2)*2^((n-1)^2)*n^(n-3).
Original entry on oeis.org
1, 1, -16, -2048, 1638400, 7247757312, -164995463643136, -18446744073709551616, 9803356117276277820358656, 24178516392292583494123520000000, -271732164163901599116133024293512544256, -13717048991958695477963985711266803110069141504, 3074347100178259797134292590832254504315406543889629184
Offset: 1
- Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
- Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.
- R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
- R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
- Eric Weisstein's World of Mathematics, Discriminant
- Eric Weisstein's World of Mathematics, Pell Polynomial
Cf.
A006645,
A001629,
A001871,
A006645,
A007701,
A045618,
A045925,
A093967,
A193678,
A317404,
A317405,
A317408,
A317451,
A318184,
A318197.
Comments