cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 41 results. Next

A221855 Number of cyclotomic cosets of 13 mod 10^n.

Original entry on oeis.org

4, 12, 30, 72, 130, 204, 294, 400, 522, 660, 814, 984, 1170, 1372, 1590, 1824, 2074, 2340, 2622, 2920, 3234, 3564, 3910, 4272, 4650, 5044, 5454, 5880, 6322, 6780, 7254, 7744, 8250, 8772, 9310, 9864, 10434, 11020, 11622, 12240, 12874, 13524, 14190, 14872, 15570, 16284, 17014, 17760, 18522, 19300
Offset: 1

Views

Author

V. Raman, Jan 28 2013

Keywords

Examples

			a(2) = 12 because there are 12 cyclotomic cosets of 13 mod 100:
{1, 13, 69, 97, 61, 93, 9, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77}
{3, 39, 7, 91, 83, 79, 27, 51, 63, 19, 47, 11, 43, 59, 67, 71, 23, 99, 87, 31}
{2, 26, 38, 94, 22, 86, 18, 34, 42, 46, 98, 74, 62, 6, 78, 14, 82, 66, 58, 54}
{4, 52, 76, 88, 44, 72, 36, 68, 84, 92, 96, 48, 24, 12, 56, 28, 64, 32, 16, 8}
{5, 65, 45, 85}
{15, 95, 35, 55}
{25}
{75}
{10, 30, 90, 70}
{20, 60, 80, 40}
{50}
{0}
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=DivisorSum[10^n,EulerPhi[#]/MultiplicativeOrder[13,#]&]; Array[a,50] (* Ray Chandler, Jul 03 2023, after Jean-François Alcover *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(13, d)))", "))

Formula

a(n) = A220018(n) for n = 1.
a(n) = A220018(n) + 1 for all n >= 2.
Conjecture: a(n) = 2*n*(4*n-7) for n>2. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>5. G.f.: 2*x*(4*x^4-7*x^3-3*x^2-2) / (x-1)^3. - Colin Barker, Apr 14 2013

A333468 Length of the largest disjoint cycle of the permutation that results from the composition of first n circular shifts.

Original entry on oeis.org

1, 2, 2, 3, 5, 6, 3, 4, 9, 4, 7, 10, 9, 14, 4, 5, 7, 18, 8, 10, 7, 7, 14, 11, 6, 26, 12, 9, 29, 30, 5, 6, 33, 11, 21, 6, 11, 15, 22, 27, 41, 6, 17, 8, 8, 7, 22, 24, 15, 50, 28, 8, 53, 18, 22, 14, 25, 9, 15, 55, 14, 50, 6, 7, 65, 11, 19, 34, 69, 23, 35, 14, 22, 74, 10
Offset: 1

Views

Author

Richard Locke Peterson, Mar 22 2020

Keywords

Comments

Size of the largest part of the partition of n that is associated with the cycle structure of the permutation given by the permutation product (1)*(1,2)*(1,2,3)*...*(1,2,3,...n) after the product is rewritten as the product of disjoint cycles, where * means functional composition, and the permutations are written in cycle form.
Also see Circular shift on Wikipedia.
For n>1, a(n) is always greater than 1, since the given product can never be the identity permutation on the set {1,2,...,n}, which is the only permutation associated with the partition <1,1,...,1> (1 repeated n times).
Connections: The image of 1 in each resulting permutation appears to be the same as the numbers in A003602. The number of parts in the partition associated with each resulting permutation appear to match the numbers in A006694.
The LCM of all cycle lengths gives A051732(n+1). - Alois P. Heinz, Apr 08 2020

Examples

			For n=3, the permutation (1)*(1,2)*(1,2,3)=(1)*(2,3), which is associated with the partition <2,1> of 3. The size of the largest part is 2, so a(3)=2.
For n=11, the permutation (1)*(1,2)*..*(1,2,..11)=(1,2,7,5)*(3,4,8,10,11,6,9) when rewritten as the product of disjoint cycles, which is associated with the partition <7,4> of 11. The size of the largest part is 7, so a(11)=7.
		

Crossrefs

Programs

  • PARI
    Follow(s, f)={my(t=f(s), k=1); while(t>s, k++; t=f(t)); if(s==t, k, 0)}
    mkp(n)={my(v=vector(n,i,i)); for(k=1, n, my(t=v[1]); for(i=1, k-1, v[i]=v[i+1]); v[k]=t); v}
    a(n)={my(v=mkp(n), m=0); for(i=1, n, m=max(m, Follow(i, j->v[j]))); m} \\ Andrew Howroyd, Mar 27 2020

Formula

a(n) = n <=> n in { A163782 } union { 1 }. - Alois P. Heinz, Apr 08 2020

Extensions

Terms a(20) and beyond from Andrew Howroyd, Mar 27 2020

A366494 a(n) is the number of cycles of the map f(x) = 10*x mod (10*n - 1).

Original entry on oeis.org

8, 1, 1, 8, 2, 1, 5, 6, 2, 53, 1, 4, 8, 3, 1, 14, 4, 1, 41, 2, 16, 29, 1, 34, 8, 49, 1, 26, 2, 7, 11, 16, 4, 5, 3, 2, 80, 1, 1, 26, 2, 1, 83, 2, 14, 29, 9, 2, 8, 1, 1, 14, 2, 27, 17, 16, 2, 5, 9, 2, 14, 1, 25, 26, 16, 1, 5, 8, 14, 5, 1, 2, 32, 3, 5, 50, 4, 17, 5, 4, 4, 143
Offset: 1

Views

Author

Hillel Wayne, Oct 10 2023

Keywords

Comments

Taking the length of each orbit that starts from f(0)=1 gives the sequence A128858.
Equivalently, the number of cyclotomic cosets of 10 mod (10*n - 1). See A006694.
Map is the Multiply-with-carry algorithm with a=n, b=10, and c=1.

Examples

			For a(4) the 8 cycles are:
  (1 10 22 25 16 4)
  (2 20 5 11 32 8)
  (3 30 27 36 9 12)
  (6 21 15 33 18 24)
  (7 31 37 19 34 28)
  (13)
  (14 23 35 38 29 17)
  (26)
		

Crossrefs

Programs

  • PARI
    a(n)=sumdiv(10*n-1, d, eulerphi(d)/znorder(Mod(10, d)))-1;
    vector(100, n, a(n-1)) \\ Joerg Arndt, Jan 22 2024
  • Python
    def get_num_orbits(n: int) -> int:
        orbits = 0
        mod = 10*n - 1
        seen = set()
        for i in range(1, mod):
            if i not in seen:
                seen.add(i)
                orbits += 1
            x = 10*i % mod
            while x != i:
                seen.add(x)
                x = 10*x % mod
        return orbits
    
  • Python
    from sympy import totient, n_order, divisors
    def A366494(n): return sum(totient(d)//n_order(10,d) for d in divisors(10*n-1,generator=True) if d>1) # Chai Wah Wu, Apr 09 2024
    

A139042 Composite numbers c for which A064287((c-1)/2)=1.

Original entry on oeis.org

15, 39, 55, 87, 95, 111, 143, 159, 183, 295, 303, 319, 335, 407, 415, 447, 519, 535, 543, 551, 583, 591, 655, 695, 767, 807, 815, 879, 895, 951, 1007, 1047, 1055, 1079, 1119, 1135, 1167, 1263, 1383, 1391, 1527, 1623, 1639, 1671, 1703, 1711, 1735, 1839, 1895, 1903, 1919, 1943
Offset: 1

Views

Author

Vladimir Shevelev, Jun 01 2008

Keywords

Comments

Is there an n for which A006694((a(n)-1)/2) is not equal to 4?

Crossrefs

Extensions

More terms (using A064287 b-file) from Michel Marcus, Dec 16 2018

A140197 A137576((k-1)/2) for composite numbers k from A141229.

Original entry on oeis.org

55, 301, 3631, 6085, 19495, 70645, 147853, 438205, 605695, 669781, 888823, 1694695, 3060301, 3640783, 6692791, 7998895, 9857245, 12912535, 15443365, 17109895, 17690941, 22819693, 28048231, 34936663, 58178245, 75203725, 95263573, 124984543, 127160245, 155267965
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    r[n_] := EulerPhi[n]/MultiplicativeOrder[2, n]; d[n_] := DivisorSum[n, r[#] &]; f[n_] := (m = MultiplicativeOrder[2, n])*d[n] - m + 1; f /@ Select[Range[10^5], CompositeQ[#] && Total@(r /@ Divisors[#]) - 1 == 3 &] (* Amiram Eldar, Sep 12 2019 *)

Extensions

More terms from Amiram Eldar, Sep 12 2019

A140198 A002326((k-1)/2) for composite numbers k from A141229.

Original entry on oeis.org

18, 100, 1210, 2028, 6498, 23548, 49284, 146068, 201898, 223260, 296274, 564898, 1020100, 1213594, 2230930, 2666298, 3285748, 4304178, 5147788, 5703298, 5896980, 7606564, 9349410, 11645554, 19392748, 25067908, 31754524, 41661514, 42386748, 51755988, 54296298
Offset: 1

Views

Author

Vladimir Shevelev, Jun 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    r[n_] := EulerPhi[n]/MultiplicativeOrder[2, n]; d[n_] := DivisorSum[n, r[#] &]; f[n_] := (m = MultiplicativeOrder[2, n])*d[n] - m + 1; MultiplicativeOrder[2, #] & /@  Select[Range[10^5], CompositeQ[#] && Total@(r /@ Divisors[#]) - 1 == 3 &] (* Amiram Eldar, Sep 12 2019 *)

Extensions

a(4) corrected and more terms added by Amiram Eldar, Sep 12 2019

A140320 a(n) = A137576((3^n-1)/2).

Original entry on oeis.org

1, 3, 13, 55, 217, 811, 2917, 10207, 34993, 118099, 393661, 1299079, 4251529, 13817467, 44641045, 143489071, 459165025, 1463588515, 4649045869, 14721978583, 46490458681, 146444944843, 460255540933, 1443528742015, 4518872583697, 14121476824051, 44059007691037, 137260754729767
Offset: 0

Views

Author

Vladimir Shevelev, May 26 2008

Keywords

Comments

Conjecture. a(n) = 2n*3^(n-1)+1.
If conjecture is true then limsup(A137576(n)/n)=infinity while liminf(A137576(n)/n)=2 with a realization on primes.
a(n) is also the number of edges in the graph generated from the n-dimensional hypercube (plus 1) in the following manner: connect all (d + 1)-dimensional faces to the d faces that are incident. Each d-dimensional face should be incident on (n - d) (d + 1)-dimensional faces. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]

Crossrefs

Programs

  • PARI
    a137576(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1;
    a(n) = a137576((3^n-1)/2); \\ Michel Marcus, Dec 18 2018

Formula

Sum_{m = 0}^{n} 2^(n - m) * binomial(n,m) is the number of m-dimensional faces in the n-dimensional hypercube. Consequently, Sum_{m = 0..n} (n - m) * 2^(n - m) * binomial(n,m) gives the number of incidence edges, which yields said sequence minus 1. The recurrence relation is: a(n) = 3 * a(n - 1) + 2 * 3^(n - 1) - 2. [Roy Liu (royliu(AT)cs.ucsd.edu), Jul 26 2010]
Empirical G.f.: (1-4*x+7*x^2)/(1-7*x+15*x^2-9*x^3). [Colin Barker, Jan 09 2012]

Extensions

More terms from Michel Marcus, Dec 18 2018

A220019 Number of cyclotomic cosets of 7 mod 10^n.

Original entry on oeis.org

4, 27, 93, 265, 685, 1265, 2005, 2905, 3965, 5185, 6565, 8105, 9805, 11665, 13685, 15865, 18205, 20705, 23365, 26185, 29165, 32305, 35605, 39065, 42685, 46465, 50405, 54505, 58765, 63185, 67765, 72505, 77405, 82465, 87685, 93065, 98605, 104305, 110165, 116185, 122365, 128705, 135205, 141865, 148685
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Examples

			a(2) = 27 because there are 27 cyclotomic cosets of 7 mod 100:
{1, 7, 49, 43}
{2, 14, 98, 86}
{3, 21, 47, 29}
{4, 28, 96, 72}
{5, 35, 45, 15}
{6, 42, 94, 58}
{8, 56, 92, 44}
{9, 63, 41, 87}
{10, 70, 90, 30}
{11, 77, 39, 73}
{12, 84, 88, 16}
{13, 91, 37, 59}
{17, 19, 33, 31}
{18, 26, 82, 74}
{20, 40, 80, 60}
{22, 54, 78, 46}
{23, 61, 27, 89}
{24, 68, 76, 32}
{25, 75}
{34, 38, 66, 62}
{36, 52, 64, 48}
{50}
{51, 57, 99, 93}
{53, 71, 97, 79}
{55, 85, 95, 65}
{67, 69, 83, 81}
{0}
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[10^n, EulerPhi[#] / MultiplicativeOrder[7, #] & ]; Array[a, 50] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(7, d)))", "))

Formula

Empirical G.f.: x*(88*x^5-142*x^4-63*x^3-24*x^2-15*x-4) / (x-1)^3. [Colin Barker, Feb 03 2013]
Conjecture: a(n) = 5*(16*n^2-60*n+37) for n>3. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>6. [Colin Barker, Apr 14 2013]

A220020 Number of cyclotomic cosets of 9 mod 10^n.

Original entry on oeis.org

6, 20, 56, 140, 256, 404, 584, 796, 1040, 1316, 1624, 1964, 2336, 2740, 3176, 3644, 4144, 4676, 5240, 5836, 6464, 7124, 7816, 8540, 9296, 10084, 10904, 11756, 12640, 13556, 14504, 15484, 16496, 17540, 18616, 19724, 20864, 22036, 23240, 24476, 25744, 27044, 28376, 29740, 31136, 32564, 34024, 35516, 37040, 38596
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Examples

			a(2) = 20 because there are 20 cyclotomic cosets of 9 mod 100:
{1, 9, 81, 29, 61, 49, 41, 69, 21, 89}
{3, 27, 43, 87, 83, 47, 23, 7, 63, 67}
{11, 99, 91, 19, 71, 39, 51, 59, 31, 79}
{13, 17, 53, 77, 93, 37, 33, 97, 73, 57}
{2, 18, 62, 58, 22, 98, 82, 38, 42, 78}
{4, 36, 24, 16, 44, 96, 64, 76, 84, 56}
{6, 54, 86, 74, 66, 94, 46, 14, 26, 34}
{8, 72, 48, 32, 88, 92, 28, 52, 68, 12}
{10, 90}
{30, 70}
{20, 80}
{40, 60}
{50}
{5, 45}
{15, 35}
{55, 95}
{65, 85}
{25}
{75}
{0}
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[10^n, EulerPhi[#]/MultiplicativeOrder[9, #]&]; Array[a, 50] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
    LinearRecurrence[{3,-3,1},{6,20,56,140,256},50] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(9, d)))", "))

Formula

Conjecture: a(n) = 4*(4*n^2-7*n-1) for n>2. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>5. G.f.: 2*x*(8*x^4-13*x^3-7*x^2-x-3) / (x-1)^3. - Colin Barker, Apr 13 2013

A220021 Number of cyclotomic cosets of 11 mod 10^n.

Original entry on oeis.org

10, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577, 18335, 19109, 19899
Offset: 1

Views

Author

V. Raman, Jan 27 2013

Keywords

Comments

How is this related to A181890? - R. J. Mathar, Apr 11 2013

Examples

			a(2) = 27 because there are 27 cyclotomic cosets of 11 mod 100:
{1, 11, 21, 31, 41, 51, 61, 71, 81, 91}
{3, 33, 63, 93, 23, 53, 83, 13, 43, 73}
{7, 77, 47, 17, 87, 57, 27, 97, 67, 37}
{9, 99, 89, 79, 69, 59, 49, 39, 29, 19}
{2, 22, 42, 62, 82}
{12, 32, 52, 72, 92}
{4, 44, 84, 24, 64}
{14, 54, 94, 34, 74}
{6, 66, 26, 86, 46}
{16, 76, 36, 96, 56}
{8, 88, 68, 48, 28}
{18, 98, 78, 58, 38}
{5, 55}
{15, 65}
{25, 75}
{35, 85}
{45, 95}
{0}
{10}
{20}
{30}
{40}
{50}
{60}
{70}
{80}
{90}
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[10^n, EulerPhi[#] / MultiplicativeOrder[11, #] &]; Array[a, 50] (* Jean-François Alcover, Dec 18 2015 *)
  • PARI
    for(n=1,50,print1(sumdiv(10^n, d, eulerphi(d)/znorder(Mod(11, d)))", "))

Formula

Conjecture: a(n) = 8*n^2-2*n-1 for n>1. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4. G.f.: x*(5*x^3-14*x^2+3*x-10) / (x-1)^3. - Colin Barker, Apr 13 2013
Previous Showing 31-40 of 41 results. Next