cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A072217 Consider the Reverse and Add! problem (cf. A001127); of all the n-digit numbers N which eventually reach a palindrome, pick that number N which takes the greatest number of steps to converge (in case of a tie, pick the smallest N); sequence gives number of steps N takes to converge.

Original entry on oeis.org

2, 24, 23, 21, 55, 64, 96, 96, 98, 109, 149, 149, 188, 186, 201, 197, 236, 232
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2002

Keywords

Comments

Since we do not even know if 196 eventually converges (see A006960, A023108) for n >= 3 these values are only conjectures.

Crossrefs

Extensions

Corrected and extended by Jason Doucette, Mar 29 2005; Oct 09 2005

A072218 Consider the Reverse and Add! problem (cf. A001127); of all the n-digit numbers N which eventually reach a palindrome, pick that number N which takes the greatest number of steps to converge (in case of a tie, pick the smallest N); sequence gives palindrome that is reached.

Original entry on oeis.org

11, 8813200023188, 8813200023188, 8813200023188, 4668731596684224866951378664, 682049569465550121055564965940286, 555458774083726674580862268085476627380477854555, 555458774083726674580862268085476627380477854555, 1345428953367763125675365555635765213677633598245431
Offset: 1

Views

Author

N. J. A. Sloane, Jul 05 2002

Keywords

Comments

Since we do not even know if 196 eventually converges (see A006960, A023108) for n >= 3 these values are only conjectures.

Crossrefs

A243238 Table T(n,r) of terms in the reverse and add sequences of positive integers n read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 4, 4, 3, 8, 8, 6, 4, 16, 16, 12, 8, 5, 77, 77, 33, 16, 10, 6, 154, 154, 66, 77, 11, 12, 7, 605, 605, 132, 154, 22, 33, 14, 8, 1111, 1111, 363, 605, 44, 66, 55, 16, 9, 2222, 2222, 726, 1111, 88, 132, 110, 77, 18, 10, 4444, 4444, 1353, 2222, 176, 363, 121, 154, 99, 11, 11
Offset: 1

Views

Author

Felix Fröhlich, Jun 12 2014

Keywords

Examples

			T(5,6) = 88, since 88 is the 6th term in the reverse and add sequence of 5.
Table starts with:
  1 2 4 8 16 77 154 605 1111 2222
  2 4 8 16 77 154 605 1111 2222 4444
  3 6 12 33 66 132 363 726 1353 4884
  4 8 16 77 154 605 1111 2222 4444 8888
  5 10 11 22 44 88 176 847 1595 7546
  6 12 33 66 132 363 726 1353 4884 9768
  7 14 55 110 121 242 484 968 1837 9218
  8 16 77 154 605 1111 2222 4444 8888 17776
  9 18 99 198 1089 10890 20691 40293 79497 158994
  10 11 22 44 88 176 847 1595 7546 14003
		

Crossrefs

Rows n=1, 3, 5, 7, 9 give: A001127, A033648, A033649, A033650, A033651.
Main diagonal gives A244058.

Programs

  • Maple
    T:= proc(n, r) option remember; `if`(r=1, n, (h-> h +(s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(T(n, r-1)))
        end:
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    rad[n_] := n + FromDigits[Reverse[IntegerDigits[n]]];
    T[n_, 1] := n; T[n_, k_] := T[n, k] = rad[T[n, k-1]];
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)

A088753 Numbers k such that the Reverse and Add! trajectory of k (presumably) does not reach a palindrome (with the exception of k itself) and does not join the trajectory of any term m < k.

Original entry on oeis.org

196, 879, 1997, 7059, 9999, 10553, 10563, 10577, 10583, 10585, 10638, 10663, 10668, 10697, 10715, 10728, 10735, 10746, 10748, 10783, 10785, 10787, 10788, 10877, 10883, 10963, 10965, 10969, 10977, 10983, 10985, 12797, 12898, 13097, 13197, 13694, 14096, 14698, 15297, 15597, 18598, 18798
Offset: 1

Views

Author

Klaus Brockhaus, Nov 04 2003

Keywords

Comments

Although the starting number k is regarded as part of the trajectory, it is allowed to be palindromic. Hence palindromes are not excluded from the sequence. A063048 is obtained if palindromes are excluded. The smallest term in A088753 but not in A063048 is 9999, the smallest term in A063048 but not in A088753 is 19098.
W. VanLandingham and others have computed nearly 10^7 terms (all terms < 10^14), cf. W. VanLandingham, 196 and Other Lychrel Numbers.
From M. F. Hasler, Apr 13 2019: (Start)
Lychrel numbers listed here are also called "seeds", in contrast to Kin numbers A023108 which include all terms in the orbits of the former.
It is not easy to determine whether the orbit of a given term will never merge into the orbit of an earlier term. It seems that the property of "disjoint orbit" is as conjectural as the property of not reaching a palindrome. One could specify a "search limit" in order to get a well-defined sequence. The given list of terms has been checked and extended by considering the orbits up to members of size <= 10^199 at least. Given that the number increases by a factor 10 roughly every 2.416 iterations, this corresponds to about 500 iterations. (End)

Examples

			From _M. F. Hasler_, Apr 13 2019: (Start)
All numbers < 196 quickly reach a palindrome under iterations of the reverse-and-add function A056964, cf. A033665.
a(1) = 196 is the smallest integer which appears to never reach a palindrome (checked up to 10^9 iterations!).
Next, A056964(196) = 196 + 691 = 887 is in the orbit of 196 and will therefore never reach a palindrome if 196 does not. However, we do not list this term in this sequence because it is in the orbit of the smaller term 196.
Similarly, 295 + 592 = 887 = A056964(196). Therefore, 295 will also never reach a palindrome if 196 (and therefore 887) doesn't. But again we will not list this number, because its orbit merges into that of the smaller term 196.
The next number which appears to be a Lychrel and has an orbit (conjectured to be) disjoint with that of 196 is 897 = a(2). (End)
		

Crossrefs

Cf. A063048 (variant excluding palindromes), A023108 (Kin numbers), A056964 (reverse-and-add), A006960 (orbit of 196), A033665 (steps to reach a palindrome), A061563 (terminating palindrome of n's orbit), A002113 (palindromes).

Programs

  • Mathematica
    limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    utraj = {};
    Select[Range[0,
      20000], (np = # + IntegerReverse[#];
       x = NestWhileList[ # + IntegerReverse[#] &, np, ! PalindromeQ[#] &, 1, limit];
       If[Length[x] >= limit  && Intersection[x, utraj] == {},
        utraj = Union[utraj, x, {np}]; True,
    utraj = Union[utraj, x, {np}]]) &] (* Robert Price, Oct 16 2019 *)
  • PARI
    A088753_upto(LIM=2e4,M=1e199)={my(U=[],a=List());for(n=1,LIM, my(t=n); while( tA002113(t=A056964(t)) && next(2)); setsearch(U,t) && next; U=setunion(U,[t]); print1(n","); listput(a,n)); Set(a)} \\ M. F. Hasler, Apr 13 2019

Extensions

Edited by M. F. Hasler, Apr 13 2019

A033650 Trajectory of 7 under map x --> x + (x-with-digits-reversed).

Original entry on oeis.org

7, 14, 55, 110, 121, 242, 484, 968, 1837, 9218, 17347, 91718, 173437, 907808, 1716517, 8872688, 17735476, 85189247, 159487405, 664272356, 1317544822, 3602001953, 7193004016, 13297007933, 47267087164, 93445163438, 176881317877, 955594506548, 1801200002107
Offset: 0

Views

Author

Keywords

Comments

A Reverse and Add! sequence.
Trajectories of 19, 23, 28, 29, 32, 37, 38, 41, 46, 47, 49, 50, ..., merge into this sequence. - Robert G. Wilson v, Dec 16 2005
A Reverse and Add! sequence.

Crossrefs

Programs

  • Haskell
    a033650 n = a033650_list !! n
    a033650_list = iterate a056964 7 -- Reinhard Zumkeller, Sep 22 2011
  • Maple
    a:= proc(n) option remember; `if`(n=0, 7, (h-> h+ (s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    NestList[ # + FromDigits@Reverse@IntegerDigits@# &, 7, 26] (* Robert G. Wilson v *)

A033651 Trajectory of 9 under map x->x + (x-with-digits-reversed).

Original entry on oeis.org

9, 18, 99, 198, 1089, 10890, 20691, 40293, 79497, 158994, 658845, 1207701, 2284722, 4559544, 9019098, 17928207, 88211178, 175322466, 839546037, 1570191975, 7362102726, 13634115363, 49985258994, 99970517988, 188942025987, 978462275868, 1847034540747, 9317488848228
Offset: 0

Views

Author

Keywords

Comments

Trajectories of 27, 36, 45, 54, 63, 72, 81, 90, ..., merge into this sequence. - Robert G. Wilson v, Dec 16 2005.

Crossrefs

Row n=9 of A243238.
Partial sums of A112296.

Programs

  • Haskell
    a063051 n = a063051_list !! n
    a063051_list = iterate a056964 879 -- Reinhard Zumkeller, Sep 22 2011
  • Maple
    a:= proc(n) option remember; `if`(n=0, 9, (h-> h+ (s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    NestList[ # + FromDigits@Reverse@IntegerDigits@# &, 9, 26] (* Robert G. Wilson v *)

A033649 Trajectory of 5 under map x->x + (x-with-digits-reversed).

Original entry on oeis.org

5, 10, 11, 22, 44, 88, 176, 847, 1595, 7546, 14003, 44044, 88088, 176176, 847847, 1596595, 7553546, 14007103, 44177144, 88354288, 176599676, 853595347, 1597190705, 6668108656, 13236127322, 35608290553
Offset: 0

Views

Author

Keywords

Comments

Trajectories of 15, 21, 24, 30, 39, 42, 48, 51, 57, 60, 69, 75, 78, 84, 87, 93, 96, ..., merge into this sequence. - Robert G. Wilson v, Dec 16 2005
A Reverse and Add! sequence.
Trajectories of 13, 17, 20, 26, 31, 35, 40, 53, 62, 71, 79, 80, 97, ..., merge into this sequence. - Robert G. Wilson v, Dec 16 2005

Crossrefs

Programs

  • Haskell
    a033649 n = a033649_list !! n
    a033649_list = iterate a056964 5 -- Reinhard Zumkeller, Sep 22 2011
  • Maple
    a:= proc(n) option remember; `if`(n=0, 5, (h-> h+ (s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(a(n-1)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    NestList[ # + FromDigits@Reverse@IntegerDigits@# &, 5, 29] (* Robert G. Wilson v, Dec 16 2005 *)

A063433 'Reverse and Add!' trajectory of 10577.

Original entry on oeis.org

10577, 88078, 175166, 836737, 1574375, 7309126, 13528163, 49710694, 99312488, 187733887, 976071668, 1842242347, 9274664828, 17559329557, 93151725128, 175304440267, 937348843838, 1775697687577, 9533565653348, 17967131306707
Offset: 0

Views

Author

Klaus Brockhaus, Jul 20 2001

Keywords

Examples

			a(1) = 10577 + 77501 = 88078.
		

Crossrefs

Programs

  • ARIBAS
    m := 10577; stop := 20; c := 0; rev := int_reverse(m); while m <> rev and c < stop do inc(c); write(m," "); m := m + rev; rev := int_reverse(m); end;
    
  • Haskell
    a063433 n = a063433_list !! n
    a063433_list = iterate a056964 10577 -- Reinhard Zumkeller, Sep 22 2011
  • Mathematica
    NestList[#+FromDigits[Reverse[IntegerDigits[#]]]&,10577, 20]  (* Harvey P. Dale, Apr 03 2011 *)
  • PARI
    Rev(x)= { local(d,r); r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); return(r) }
    { for (n=0, 200, if (n, a+=Rev(a), a=10577); write("b063433.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 21 2009
    

A063051 'Reverse and Add!' trajectory of 879.

Original entry on oeis.org

879, 1857, 9438, 17787, 96558, 182127, 903408, 1707717, 8884788, 17759676, 85455447, 159910905, 668930856, 1326970722, 3597766953, 7194444906, 13288889823, 46187778054, 91275556218, 172541113437, 906852258708
Offset: 0

Views

Author

Klaus Brockhaus, Jul 07 2001

Keywords

Examples

			a(1) = 879 + 978 = 1857.
		

Crossrefs

Programs

  • ARIBAS
    m := 879; stop := 25; c := 0; rev := int_reverse(m); while m <> rev and c < stop do inc(c); write(m," "); m := m + rev; rev := int_reverse(m); end;
    
  • Haskell
    a033651 n = a033651_list !! n
    a033651_list = iterate a056964 9 -- Reinhard Zumkeller, Sep 22 2011
  • Mathematica
    NestList[# + FromDigits[Reverse[IntegerDigits[#]]]&, 879, 40] (* Vincenzo Librandi, Sep 23 2013 *)
  • PARI
    Rev(x)= { local(d); r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); return(r) }
    { for (n=0, 200, if (n, a+=Rev(a), a=879); write("b063051.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 16 2009
    

A063057 'Reverse and Add!' trajectory of 7059.

Original entry on oeis.org

7059, 16566, 83127, 155265, 717816, 1336533, 4692864, 9375828, 17661567, 94178238, 177465387, 961030158, 1812060327, 9042662508, 17095324917, 89037683988, 177976357086, 858730036857, 1617360074715, 6792060711876
Offset: 0

Views

Author

Klaus Brockhaus, Jul 07 2001

Keywords

Examples

			a(1) = 7059 + 9507 = 16566.
		

Crossrefs

Programs

  • ARIBAS
    m := 7059; stop := 25; c := 0; rev := int_reverse(m); while m <> rev and c < stop do inc(c); write(m," "); m := m + rev; rev := int_reverse(m); end;
    
  • Haskell
    a063057 n = a063057_list !! n
    a063057_list = iterate a056964 7059 -- Reinhard Zumkeller, Sep 22 2011
  • Mathematica
    NestList[# + FromDigits[Reverse[IntegerDigits[#]]]&, 7059, 40] (* Vincenzo Librandi, May 03 2014 *)
Previous Showing 21-30 of 45 results. Next