cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A056729 If p | n, then p+1 | n+1 for composite n.

Original entry on oeis.org

8, 27, 32, 63, 125, 128, 243, 275, 343, 399, 512, 567, 575, 935, 1127, 1331, 1539, 2015, 2048, 2187, 2197, 2303, 2783, 2915, 3087, 3125, 4563, 4913, 4991, 5103, 5719, 5831, 6399, 6859, 6875, 6929, 7055, 7139, 7625, 8192, 8855, 12167, 12719, 14027
Offset: 1

Views

Author

Robert G. Wilson v, Aug 31 2000

Keywords

Comments

The Lucas-Carmichael numbers (A006972) are a subset.
Contains p^(2k+1) for any prime p, since (x+1) | (x^n + 1) when n is odd.
The only even numbers in this sequence are the composite odd powers of 2. [Emmanuel Vantieghem, Jul 08 2013]
If you try to extend this idea to the divisors, the only integer which is satisfied is 1.
Extension to prime power divisors is possible. [Emmanuel Vantieghem, Jul 08 2013]

Crossrefs

Cf. A006972.

Programs

  • Mathematica
    fQ[n_] := !PrimeQ[n] && Union[ Mod[ n + 1, Transpose[ FactorInteger[n]][[1]] + 1]] == {0}; Select[ Range[20000], fQ[#] &]
  • PARI
    is(n)=my(f=factor(n)[,1]);for(i=1,#f,if((n+1)%(f[i]+1), return(0))); !isprime(n) \\ Charles R Greathouse IV, Jan 15 2015

A216928 Least Lucas-Carmichael number with n prime factors.

Original entry on oeis.org

399, 8855, 588455, 139501439, 3512071871, 199195047359, 14563696180319, 989565001538399, 20576473996736735, 4049149795181043839, 409810997884396741919, 46852073639840281125599, 6414735508880546179805759, 466807799396932243821123839, 41222773167337486494297521279
Offset: 3

Views

Author

Tim Johannes Ohrtmann, Sep 20 2012

Keywords

Comments

Is this sequence infinite? - Charles R Greathouse IV, Sep 23 2012
a(15) <= 6414735508880546179805759. a(16) <= 466807799396932243821123839. - Donovan Johnson, Sep 26 2012

Crossrefs

Cf. A006972 (Lucas-Carmichael numbers).

Programs

  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
    a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=lucas_carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023

Extensions

a(7)-a(12) from Donovan Johnson, Sep 22 2012
a(13)-a(14) from Donovan Johnson, Sep 26 2012
a(15)-a(16) confirmed and a(17) added by Daniel Suteu, Aug 29 2022

A202157 a(n) = smallest k having at least two prime divisors d such that (d + n) | ( k + n).

Original entry on oeis.org

63, 18, 45, 50, 75, 66, 63, 102, 75, 50, 165, 198, 147, 258, 165, 110, 663, 182, 399, 442, 147, 242, 705, 678, 455, 786, 483, 182, 1015, 950, 1023, 988, 363, 506, 637, 1446, 1083, 322, 885, 590, 1155, 1443, 1935, 2118, 627, 770, 3243, 2502, 1407, 2706, 845
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree: 63, 18, 45, ...

Examples

			a(8) = 102 because the prime divisors of 102 are 2, 3 and 17;
(2 + 8) | (102 + 8) = 110 = 10*11;
(3 + 8) | 110 = 11*10.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 52 do:i:=0:for k from 1 to 5000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>=2 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 1, k++]; k]; Array[a, 50] (* Amiram Eldar, Sep 09 2019 *)

Formula

a(n) >= n^2 + 4n + 6. [Charles R Greathouse IV, Dec 13 2011]

A202158 a(n) = smallest k having at least three prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

399, 598, 165, 1886, 715, 2370, 273, 532, 231, 935, 3445, 828, 1547, 2821, 1105, 3710, 12903, 4182, 6669, 4732, 2475, 4466, 2737, 2706, 1595, 5658, 10413, 3542, 7315, 24225, 23769, 22578, 3927, 12818, 1885, 64119, 11063, 20482, 10881, 4370, 52275, 7878, 14645
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 165 because the prime divisors of 165 are 3, 5, 11 =>
(3 + 3) | (165 + 3) = 168 = 6*28;
(5 + 3) | 168 = 8*21;
(11 + 3) | 168 = 14*12.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 45 do:i:=0:for k from 1 to 100000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>2 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 2, k++]; k]; Array[a, 40] (* Amiram Eldar, Sep 09 2019 *)

A202159 a(n) = smallest k having at least four prime divisors d such that (d + n) | (k + n).

Original entry on oeis.org

8855, 11590, 27885, 122360, 16555, 10290, 6545, 61642, 71799, 65195, 14245, 142788, 63635, 580930, 39585, 21098, 69003, 258482, 59885, 378952, 8715, 266090, 133285, 690501, 27335, 704790, 1017423, 299222, 187891, 771650, 293405, 1638598, 282315, 553610, 227205
Offset: 1

Views

Author

Michel Lagneau, Dec 13 2011

Keywords

Comments

The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree.

Examples

			a(3) = 27885 because the prime divisors of 27885 are 3, 5, 11, 13  =>
(3 + 3)| (27885 + 3) = 27888 = 6*4648;
(5 + 3) | 27888 = 8*3486;
(11 + 3) | 27888 = 14*1992;
(13 + 3) | 27888 = 16*1743.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 33 do:i:=0:for k from 1 to 5000000  while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if  n1>=2 and irem(y,x[m]+n)=0 then j:=j+1:else fi:od:if j>3 then i:=1:printf(`%d, `,k):else fi:od:od:
  • Mathematica
    numd[n_, k_] := Module[{p=FactorInteger[k][[;;,1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i,1,Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 3, k++]; k]; Array[a, 35] (* Amiram Eldar, Sep 09 2019 *)

A292573 Least Lucas-Carmichael number whose Dedekind psi value is an n-th power.

Original entry on oeis.org

399, 935, 8855, 935, 191807, 31535, 2376401921999, 287432495, 3512071871, 443155187061431999, 269174015, 7187117143679, 13153784862132539999, 16794805460009764607, 12239445970372607, 308403604421150344874999, 1940371455953001599, 22735742424704664191, 193426182224210221055, 2674275760170030054482343935
Offset: 1

Views

Author

Amiram Eldar, Sep 19 2017

Keywords

Comments

There are no other terms below 10^12.

Examples

			psi(8855) = 24^3 while the psi values of smaller Lucas-Carmichael numbers are not cubes, therefore a(3) = 8855.
		

Crossrefs

Extensions

a(7),a(10),a(12)-a(26) from Max Alekseyev, May 01 2024

A253597 Least Lucas-Carmichael number divisible by the n-th prime.

Original entry on oeis.org

399, 935, 399, 935, 2015, 935, 399, 4991, 51359, 2015, 1584599, 20705, 5719, 18095, 2915, 46079, 162687, 22847, 46079, 16719263, 12719, 7055, 80189, 104663, 20705, 482143, 196559, 60059, 90287, 162687, 3441239, 13971671
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

Has any odd prime number at least one Lucas-Carmichael multiple?

Examples

			a(2) = 399 because this is the least Lucas-Carmichael number which is divisible by 3 (the second prime number).
		

Crossrefs

Programs

  • Mathematica
    LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, !PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; f[n_] := Block[{k = p = Prime@ n}, While[ !LucasCarmichaelQ@ k, k += p]; k]; Array[f, 35, 2] (* Robert G. Wilson v, Feb 11 2015 *)
  • PARI
    is_A006972(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f[, 1]>1
    a(n) = pn = prime(n); ln = 1; until (is_A006972(ln) && (ln % pn == 0), ln++); ln;
    
  • PARI
    is_A006972(n)=my(f=factor(n)); for(i=1, #f~, if((n+1)%(f[i, 1]+1) || f[i, 2]>1, return(0))); #f~>1
    a(n)=my(p=prime(n), c=p^2+p, t=p); while(!is_A006972(t+=c),); t \\ Charles R Greathouse IV, Feb 03 2015

Formula

a(n) >> n^2 log^2 n. - Charles R Greathouse IV, Feb 03 2015

A253598 a(n) = least Lucas-Carmichael number which is divisible by b(n), where {b(n)} (A255602) is the list of all numbers which could be a divisor of a Lucas-Carmichael number.

Original entry on oeis.org

399, 399, 935, 399, 935, 2015, 935, 399, 399, 4991, 51359, 2015, 8855, 1584599, 9486399, 20705, 5719, 18095, 2915, 935, 399, 46079, 162687, 2015, 22847, 46079, 16719263, 8855, 12719, 7055, 935, 80189, 189099039, 104663, 20705, 482143, 196559, 60059, 30073928079, 90287, 8855, 31535
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

a(933) <= 266336887317945807999. - Daniel Suteu, Dec 01 2023

Examples

			a(12) = 8855 because this is the least Lucas-Carmichael number which is divisible by A255602(12) = 35.
		

Crossrefs

Programs

  • Mathematica
    LucasCarmichaelQ[n_] := Block[{fi = FactorInteger@ n}, ! PrimeQ@ n && Times @@ (Last@# & /@ fi) == 1 && Plus @@ Mod[n + 1, 1 + First@# & /@ fi] == 0]; LucasCarmichaelQ[1] = False; fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; lcdv = Select[ Range@ 3204, fQ]; f[n_] := Block[{k = lcdv[[n]]}, d = 2k; While[ !LucasCarmichaelQ@ k, k += d]; k]; Array[f, 95] (* Robert G. Wilson v, Feb 11 2015 *)

Extensions

a(96) from Charles R Greathouse IV, Feb 12 2015

A255602 Numbers k which are odd and squarefree and have the property that k is either a prime number or for every prime p dividing k, p+1 is not divisible by any of the other prime factors of k.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 21, 23, 29, 31, 35, 37, 39, 41, 43, 47, 53, 55, 57, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 93, 97, 101, 103, 107, 109, 111, 113, 115, 119, 127, 129, 131, 133, 137, 139, 143, 149, 151, 155
Offset: 1

Views

Author

Keywords

Comments

A proper subset of A056911 and a proper subset of A005117. Any divisor of a Lucas-Carmichael number is in this sequence. It is not known whether every number in this sequence divides at least one Lucas-Carmichael number. All prime numbers except 2 are present. Composite numbers in the sequence include 21, 35, 39, 55, 57, 65, 77, 85, 93, 111, 115, 119, 129, 133, 143, 155, 161, 183, 185, 187, ..., .

Examples

			15 is not in the sequence since its two prime factors are 3 and 5, and 5+1 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Block[{fi = FactorInteger@ n}, ffi = First@# & /@ fi; Times @@ (Last@# & /@ fi) == 1 && Min@ Flatten@ Table[ Mod[1 + ffi, i], {i, ffi}] > 0]; fQ[1] = True; fQ[2] = False; Select[ Range@ 190, fQ]
  • PARI
    isok(n) = {if (! ((n % 2) && issquarefree(n)), return (0)); vpf = factor(n)[, 1]; for (i=1, #vpf, vpx = vpf[i]+1; for (j=1, #vpf, if (! (vpx % vpf[j]), return (0)); ); ); return (1); } \\ Michel Marcus, Mar 02 2015

A292571 Lucas-Carmichael numbers whose Dedekind psi value is a square.

Original entry on oeis.org

935, 31535, 76751, 1707839, 3106799, 11141999, 24685199, 43383167, 83618639, 151524071, 161841239, 189099039, 212133599, 213884999, 219155615, 233743319, 241485839, 271038599, 287432495, 338340239, 353107799, 624840479, 660423455, 945236159, 1171355471
Offset: 1

Views

Author

Amiram Eldar, Sep 19 2017

Keywords

Examples

			psi(935) = 36^2.
		

Crossrefs

Intersection of A006972 and A291167.

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]]; s = Import["b006972.txt","Data"][[All,-1]]; Select[s, IntegerQ@Sqrt[psi@#] &]
Previous Showing 11-20 of 47 results. Next