cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 284 results. Next

A316495 Matula-Goebel numbers of locally disjoint unlabeled rooted trees, meaning no branch overlaps any other (unequal) branch of the same root.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 79, 80, 82, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A number is in the sequence iff either it is equal to 1, it is a prime number whose prime index already belongs to the sequence, or its distinct prime indices are pairwise coprime and already belong to the sequence.

Examples

			The sequence of all locally disjoint rooted trees preceded by their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: (o(o))
   7: ((oo))
   8: (ooo)
  10: (o((o)))
  11: ((((o))))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  16: (oooo)
  17: (((oo)))
  18: (o(o)(o))
  19: ((ooo))
  20: (oo((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    go[n_]:=Or[n==1,And[Or[PrimeQ[n],CoprimeQ@@Union[primeMS[n]]],And@@go/@primeMS[n]]];
    Select[Range[100],go]

A358577 Matula-Goebel numbers of "square" rooted trees, i.e., whose height equals their number of leaves.

Original entry on oeis.org

1, 4, 12, 14, 18, 19, 21, 27, 40, 52, 60, 68, 70, 74, 78, 86, 89, 90, 91, 92, 95, 100, 102, 105, 107, 111, 117, 119, 122, 129, 130, 134, 135, 138, 146, 150, 151, 153, 161, 163, 169, 170, 175, 176, 181, 183, 185, 195, 201, 206, 207, 215, 219, 221, 225, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   1: o
   4: (oo)
  12: (oo(o))
  14: (o(oo))
  18: (o(o)(o))
  19: ((ooo))
  21: ((o)(oo))
  27: ((o)(o)(o))
  40: (ooo((o)))
  52: (oo(o(o)))
  60: (oo(o)((o)))
  68: (oo((oo)))
  70: (o((o))(oo))
  74: (o(oo(o)))
  78: (o(o)(o(o)))
  86: (o(o(oo)))
  89: ((ooo(o)))
  90: (o(o)(o)((o)))
		

Crossrefs

Internals instead of leaves: A358576, counted by A358587, ordered A358588.
Internals instead of height: A358578, counted by A185650, ordered A358579.
These trees are counted by A358589, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]

Formula

A358552(a(n)) = A109129(a(n)).

A358552 Node-height of the rooted tree with Matula-Goebel number n. Number of nodes in the longest path from root to leaf.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 3, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 3, 3, 4, 3, 5, 4, 3, 4, 4, 3, 3, 5, 4, 6, 2, 5, 4, 4, 3, 4, 3, 4, 4, 5, 3, 4, 5, 4, 4, 5, 3, 3, 4, 4, 4, 3, 3, 5, 3, 3, 5, 5, 4, 4, 6, 3, 2, 4, 5, 4, 4, 4, 4, 5, 3, 4, 4, 4, 3, 5, 4, 6, 4, 3, 5, 5, 3, 4, 4, 5, 5, 4, 4, 4, 4, 6, 5, 4, 3, 5, 3, 5, 4, 5, 4, 4, 4, 4, 3, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2022

Keywords

Comments

Edge-height is given by A109082 (see formula).
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The Matula-Goebel number of ((ooo(o))) is 89, and it has node-height 4, so a(89) = 4.
		

Crossrefs

Positions of first appearances are A007097.
This statistic is counted by A034781, ordered A080936.
The ordered version is A358379(n) + 1.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Other statistics: A061775 (nodes), A109082 (edge-height), A109129 (leaves), A196050 (edges), A342507 (internals).

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Depth[MGTree[n]]-1,{n,100}]
  • PARI
    A358552(n) = { my(v=factor(n)[, 1], d=0); while(#v, d++; v=fold(setunion, apply(p->factor(primepi(p))[, 1]~, v))); (1+d); }; \\ (after Kevin Ryde in A109082) - Antti Karttunen, Oct 23 2023
    
  • Python
    from functools import lru_cache
    from sympy import isprime, primepi, primefactors
    @lru_cache(maxsize=None)
    def A358552(n):
        if n == 1 : return 1
        if isprime(n): return 1+A358552(primepi(n))
        return max(A358552(p) for p in primefactors(n)) # Chai Wah Wu, Apr 15 2024

Formula

a(n) = A109082(n) + 1.
a(n) = A061775(n) - A358729(n). - Antti Karttunen, Oct 23 2023

Extensions

Data section extended up to a(108) by Antti Karttunen, Oct 23 2023

A091205 Factorization and index-recursion preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 32, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 243, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114, 103
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

This "deeply multiplicative" bijection is one of the deep variants of A091203 which satisfy most of the same identities as the latter, but it additionally preserves also the structures where we recurse on irreducible polynomial's A014580-index. E.g., we have: A091238(n) = A061775(a(n)). The reason this holds is that when the permutation is restricted to the binary codes for irreducible polynomials over GF(2) (A014580), it induces itself: a(n) = A049084(a(A014580(n))).
On the other hand, when this permutation is restricted to the union of {1} and reducible polynomials over GF(2) (A091242), permutation A245813 is induced.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    v091226 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    n=2; while((n < 2^22), if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++)
    A091226(n) = v091226[n];
    A091205(n) = if(n<=1,n,if(isA014580(n),prime(A091205(A091226(n))),{my(irfs,t); irfs=subst(lift(factor(Mod(1,2)*Pol(binary(n)))),x,2); irfs[,1]=apply(t->A091205(t),irfs[,1]); factorback(irfs)}));
    for(n=0, 8192, write("b091205.txt", n, " ", A091205(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1. For n that is coding an irreducible polynomial, that is if n = A014580(i), we have a(n) = A000040(a(i)) and for reducible polynomials a(ir_i X ir_j X ...) = a(ir_i) * a(ir_j) * ..., where ir_i = A014580(i), X stands for carryless multiplication of polynomials over GF(2) (A048720) and * for the ordinary multiplication of integers (A004247).
As a composition of related permutations:
a(n) = A245821(A245704(n)).
Other identities.
For all n >= 0, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A245704 has the same property.]
For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, bijectively to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers, in some order. The permutations A091203, A106443, A106445, A106447, A235042 and A245704 have the same property.]

Extensions

Name changed by Antti Karttunen, Aug 16 2014

A324696 Lexicographically earliest sequence containing 1 and all numbers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

1, 3, 6, 7, 9, 11, 12, 14, 15, 18, 19, 21, 22, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 63, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   6: {1,2}
   7: {4}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A324751 Number of strict integer partitions of n containing no prime indices of the parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 2, 4, 5, 5, 6, 8, 8, 12, 10, 14, 13, 18, 19, 26, 25, 30, 34, 39, 40, 51, 55, 60, 71, 77, 90, 97, 111, 123, 136, 153, 170, 179, 216, 230, 264, 282, 322, 345, 385, 423, 470, 513, 573, 629, 686, 755, 834, 910, 1005, 1095, 1194, 1303, 1433
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(13) = 8 strict integer partitions (A...D = 10...13):
  1   2   3   4    5   6    7    8    9    A    B     C     D
              31       42   43   71   54   64   65    75    76
                       51   52        63   73   83    84    85
                                      72   82   542   93    94
                                           91   731   A2    B2
                                                      B1    643
                                                            751
                                                            931
		

Crossrefs

The subset version is A324741, with maximal case A324743. The non-strict version is A324756. The Heinz number version is A324758. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A331915 Numbers with exactly one prime prime index, counted with multiplicity.

Original entry on oeis.org

3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}             57: {2,8}            114: {1,2,8}
    5: {3}             59: {17}             115: {3,9}
    6: {1,2}           62: {1,11}           118: {1,17}
   10: {1,3}           65: {3,6}            119: {4,7}
   11: {5}             67: {19}             124: {1,1,11}
   12: {1,1,2}         68: {1,1,7}          127: {31}
   17: {7}             69: {2,9}            129: {2,14}
   20: {1,1,3}         70: {1,3,4}          130: {1,3,6}
   21: {2,4}           77: {4,5}            134: {1,19}
   22: {1,5}           78: {1,2,6}          136: {1,1,1,7}
   24: {1,1,1,2}       80: {1,1,1,1,3}      138: {1,2,9}
   31: {11}            82: {1,13}           140: {1,1,3,4}
   34: {1,7}           83: {23}             141: {2,15}
   35: {3,4}           84: {1,1,2,4}        143: {5,6}
   39: {2,6}           87: {2,10}           145: {3,10}
   40: {1,1,1,3}       88: {1,1,1,5}        147: {2,4,4}
   41: {13}            95: {3,8}            154: {1,4,5}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
   44: {1,1,5}        109: {29}             157: {37}
   48: {1,1,1,1,2}    111: {2,12}           159: {2,16}
		

Crossrefs

These are numbers n such that A257994(n) = 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with exactly one prime index in S are A331785.
The set S of numbers with exactly one distinct prime index in S are A331913.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]

A358578 Matula-Goebel numbers of rooted trees whose number of leaves equals their number of internal (non-leaf) nodes.

Original entry on oeis.org

2, 6, 7, 18, 20, 21, 26, 34, 37, 43, 54, 60, 63, 67, 70, 78, 88, 91, 92, 95, 102, 111, 116, 119, 122, 129, 142, 146, 151, 162, 164, 173, 180, 181, 189, 200, 201, 202, 210, 227, 234, 236, 239, 245, 260, 264, 269, 273, 276, 278, 285, 306, 308, 314, 322, 333, 337
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding rooted trees begin:
   2: (o)
   6: (o(o))
   7: ((oo))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  26: (o(o(o)))
  34: (o((oo)))
  37: ((oo(o)))
  43: ((o(oo)))
  54: (o(o)(o)(o))
  60: (oo(o)((o)))
  63: ((o)(o)(oo))
  67: (((ooo)))
  70: (o((o))(oo))
  78: (o(o)(o(o)))
  88: (ooo(((o))))
  91: ((oo)(o(o)))
		

Crossrefs

These trees are counted by A185650, ordered A358579.
Height instead of leaves: A358576, counted by A358587, ordered A358588.
Height instead of internals: A358577, counted by A358589, ordered A358590.
Positions of 0's in A358580.
A000081 counts rooted trees, ordered A000108.
A034781 counts trees by nodes and height.
A055277 counts trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],{},{0,Infinity}]==Count[MGTree[#],[_],{0,Infinity}]&]

Formula

A342507(a(n)) = A109129(a(n)).

A109300 a(n) = number of positive integers whose rote height in gammas is n.

Original entry on oeis.org

1, 1, 7, 999999991
Offset: 0

Views

Author

Jon Awbrey, Jul 04 2005, revised Sep 06 2005

Keywords

Comments

a(n) is the sequence of first differences of A050924. Conversely, A050924 is the sequence of partial sums of a(n). This can be seen as follows. Let P(0) c P(1) c ... c P(n) c ... be an increasing sequence of sets of partial functions that is defined by the recursion: P(0) = {the empty function}, P(n+1) = {partial functions: P(n) -> P(n)}. Then |P(n)| = A050924(n+1) = number of positive integers of rote height at most n, hence |P(n)| - |P(n-1)| = a(n) = number of positive integers of rote height exactly n.

Examples

			Table of Rotes and Primal Functions for Positive Integers of Rote Height 2
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
o-o ` ` o-o ` ` ` o-o ` o-o o-o ` ` o-o o-o ` ` ` o-o o-o ` ` o-o o-o o-o
| ` ` ` | ` ` ` ` | ` ` | ` | ` ` ` | ` | ` ` ` ` | ` | ` ` ` | ` | ` | `
o-o ` o-o ` ` o-o o-o ` o---o ` ` o-o ` o-o ` o-o o---o ` ` o-o ` o---o `
| ` ` | ` ` ` | ` | ` ` | ` ` ` ` | ` ` | ` ` | ` | ` ` ` ` | ` ` | ` ` `
O ` ` O ` ` ` O===O ` ` O ` ` ` ` O=====O ` ` O===O ` ` ` ` O=====O ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
2:1 ` 1:2 ` ` 1:1 2:1 ` 2:2 ` ` ` 1:2 2:1 ` ` 1:1 2:2 ` ` ` 1:2 2:2 ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` 4 ` ` ` 6 ` ` ` ` 9 ` ` ` ` 12` ` ` ` ` 18` ` ` ` ` ` 36` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
		

Crossrefs

Formula

a(n) is defined by the recursion a(n+1) = (b(n) + 1)^b(n) - b(n), where a(0) = 1 and b(n) = Sum_[0, n] a(i).

A111791 Positive integers sorted by rote height, as measured by A109301.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 12, 18, 36, 5, 7, 8, 10, 13, 14, 15, 16, 20, 21, 23, 24, 25, 26, 27, 28, 30, 35, 37, 39, 40, 42, 45, 46, 48, 49, 50, 52, 54, 56, 60, 61, 63, 64, 65, 69, 70, 72, 74, 75, 78, 80, 81, 84, 90, 91, 92, 98, 100
Offset: 1

Views

Author

Jon Awbrey, Aug 24 2005, revised Sep 02 2005

Keywords

Examples

			Table in which the h-th row lists the positive integers of rote height h:
h | m such that rhig(m) = A109301(m) = h
--+------------------------------------------------------
0 |  1
--+------------------------------------------------------
1 |  2
--+------------------------------------------------------
2 |  3  4  6  9 12 18 36
--+------------------------------------------------------
3 |  5  7  8 10 13 14 15 16 20 21 23 24 25 26 27  28 30
  | 35 37 39 40 42 45 46 48 49 50 52 54 56 60 61  63
  | 64 65 69 70 72 74 75 78 80 81 84 90 91 92 98 100 ...
--+------------------------------------------------------
4 | 11 17 19 22 29 32 33 34 38 41 43 44 47 51 53 55
  | 57 58 66 68 71 73 76 77 82 83 85 86 87 88 89 94
  | 95 96 97 99 ...
--+------------------------------------------------------
5 | 31 59 62 67 79 93 ...
--+------------------------------------------------------
First column = A007097. Count in h^th row = A109300(h).
Cumulative count up through the h^th row = A050924(h+1).
		

Crossrefs

Previous Showing 31-40 of 284 results. Next