A334648
a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 34, 132, 722, 4638, 32416, 238956, 1827918, 14370595, 115384756, 942115942, 7798224226, 65286060253, 551838621972, 4702955036640, 40366238473530, 348631520142879, 3027590307082804, 26420699531880832, 231571468023697960, 2037650653547067005
Offset: 0
For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
-
a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A334649
a(n) is the total number of down steps between the third and fourth up steps in all 3_1-Dyck paths of length 4*n.
Original entry on oeis.org
0, 0, 0, 236, 1034, 6094, 40996, 295740, 2231022, 17370163, 138473536, 1124433142, 9266859394, 77307427741, 651540030688, 5538977450256, 47442103851930, 409000732566399, 3546232676711824, 30903652601552272, 270529448396053576, 2377829916885541565
Offset: 0
-
[binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 52*(n==3) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A361033
a(n) = 3*(4*n)!/(n!*(n+1)!^3).
Original entry on oeis.org
3, 9, 280, 17325, 1513512, 162954792, 20193091776, 2768662192725, 409716429837000, 64358256798795960, 10605621798062141760, 1817833036248401270280, 321997225483126007438400, 58649494641569379926280000, 10941649720331183519046796800, 2084191938036600263793119045925
Offset: 0
-
seq(3*(4*n)!/(n!*(n+1)!^3), n = 0..20);
-
Table[3 (4n)!/(n! ((n+1)!)^3),{n,0,15}] (* Harvey P. Dale, Jul 30 2024 *)
A361038
a(n) = 1680 * (3*n)!/((2*n)!*(n+3)!).
Original entry on oeis.org
280, 210, 420, 1176, 3960, 15015, 61880, 271320, 1248072, 5965050, 29414700, 148874400, 770263200, 4061212722, 21765976680, 118336861720, 651555929640, 3627981880950, 20405547069180, 115815267149400, 662742214356600
Offset: 0
A361039
a(n) = 55440 * (3*n)!/((2*n)!*(n+4)!).
Original entry on oeis.org
2310, 1386, 2310, 5544, 16335, 55055, 204204, 813960, 3432198, 15142050, 69334650, 327523680, 1588667850, 7883530578, 39904290580, 205532444040, 1075067283906, 5701114384350, 30608320603770, 166169731127400, 911270544740325
Offset: 0
A361037
a(n) = 20*(3*n)!/((2*n)!*(n+2)!).
Original entry on oeis.org
10, 10, 25, 84, 330, 1430, 6630, 32300, 163438, 852150, 4552275, 24812400, 137547000, 773564328, 4405019090, 25357898940, 147375745990, 863805209750, 5101386767295, 30332569967700, 181465130121450, 1091677288630950
Offset: 0
-
seq( 20*(3*n)!/((2*n)!*(n+2)!), n = 0..20);
-
Table[20 (3n)!/((2n)!(n+2)!),{n,0,30}] (* Harvey P. Dale, Aug 05 2024 *)
A334641
a(n) is the total number of down steps between the 3rd and 4th up steps in all 2-Dyck paths of length 3*n.
Original entry on oeis.org
0, 0, 0, 43, 108, 444, 2099, 10683, 56994, 314296, 1776519, 10236081, 59892690, 354886920, 2125117332, 12839859620, 78176677734, 479177993904, 2954360065247, 18309779343549, 114001476318240, 712751759478780, 4472908385838795, 28165267333869435
Offset: 0
-
a[0] = a[1] = a[2] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
-
a(n) = if (n<=2, 0, 2*sum(j=1, 3, binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020
A334643
a(n) is the total number of down steps between the second and third up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
Original entry on oeis.org
0, 0, 16, 53, 209, 963, 4816, 25367, 138531, 777041, 4449511, 25901655, 152818458, 911755012, 5491420104, 33343242196, 203881825163, 1254342228285, 7759025239189, 48227078649155, 301056318504165, 1886647802277315, 11864793375611820, 74854437302309175
Offset: 0
For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 4 + 3 + 2 + 1 + 1 + 2 + 3 = 16 down steps between the 2nd up step and the end of the path.
-
[binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2, j)*binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 7*(n==2) if n >= 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020
A121446
Number of ternary trees with n edges and such that the first leaf in the preorder traversal is at level 1.
Original entry on oeis.org
3, 3, 10, 42, 198, 1001, 5304, 29070, 163438, 937365, 5462730, 32256120, 192565800, 1160346492, 7048030544, 43108428198, 265276342782, 1641229898525, 10202773534590, 63698396932170, 399223286267190, 2510857763851185, 15842014607109600, 100244747986099080
Offset: 1
a(1) = 3 because we have the trees /, | and \.
a(2) = 3 because we have the trees /|, /\ and |\.
-
a:=proc(n) if n=1 then 3 else (2/n)*binomial(3*n-3,n-1) fi end: seq(a(n),n=1..25);
-
a[1] = 3; a[n_] := (2/n) Binomial[3 n - 3, n - 1];
Array[a, 22] (* Jean-François Alcover, Nov 28 2017 *)
A334608
a(n) is the total number of down-steps after the final up-step in all 3_1-Dyck paths of length 4*n (n up-steps and 3n down-steps).
Original entry on oeis.org
0, 5, 34, 236, 1714, 12922, 100300, 796572, 6443536, 52909593, 439896626, 3695917940, 31331587252, 267669458420, 2302188456120, 19918434257052, 173240112503520, 1513821095788420, 13283883136738344, 117009704490121520, 1034217260142108570, 9169842145476773250, 81537271617856588380
Offset: 0
For n=1, a(1)=5 is the total number of down-steps after the last up-step in Uddd, dUdd.
Cf.
A002293,
A007226,
A007228,
A334609,
A334645,
A334646,
A334647,
A334648,
A334649,
A334680,
A334682,
A334785.
-
a[n_] := 2 * Binomial[4*n + 6, n + 1]/(4*n + 6) - 4 * Binomial[4*n + 2, n]/(4*n + 2); Array[a, 23, 0] (* Amiram Eldar, May 13 2020 *)
-
[2*binomial(4*(n + 1) + 2, n + 1)/(4*(n + 1) + 2) - 4*binomial(4*n + 2, n)/(4*n + 2) for n in srange(30)] # Benjamin Hackl, May 13 2020
Comments