cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A334648 a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.

Original entry on oeis.org

0, 0, 34, 132, 722, 4638, 32416, 238956, 1827918, 14370595, 115384756, 942115942, 7798224226, 65286060253, 551838621972, 4702955036640, 40366238473530, 348631520142879, 3027590307082804, 26420699531880832, 231571468023697960, 2037650653547067005
Offset: 0

Views

Author

Benjamin Hackl, May 12 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
For n = 2, there is no 3rd up step, a(2) = 34 enumerates the total number of down steps between the 2nd up step and the end of the path.

Examples

			For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
		

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* Amiram Eldar, May 12 2020 *)
  • SageMath
    [binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020

Formula

a(0) = a(1) = 0 and a(n) = binomial(4*n+1, n)/(4*n+1) + 6*Sum_{j=1..2} binomial(4*j+2, j)*binomial(4*(n-j), n-j)/((4*j+2)*(n-j+1)) - 9*[n=2] for n > 1, where [ ] is the Iverson bracket.

A334649 a(n) is the total number of down steps between the third and fourth up steps in all 3_1-Dyck paths of length 4*n.

Original entry on oeis.org

0, 0, 0, 236, 1034, 6094, 40996, 295740, 2231022, 17370163, 138473536, 1124433142, 9266859394, 77307427741, 651540030688, 5538977450256, 47442103851930, 409000732566399, 3546232676711824, 30903652601552272, 270529448396053576, 2377829916885541565
Offset: 0

Views

Author

Benjamin Hackl, May 12 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
For n = 3, there is no 4th up step, a(3) = 236 enumerates the total number of down steps between the 3rd up step and the end of the path.

Crossrefs

Programs

  • SageMath
    [binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 4)]) - 52*(n==3) if n > 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020

Formula

a(0) = a(1) = a(2) = 0 and a(n) = binomial(4*n+1, n)/(4*n+1) + 6*Sum_{j=1..3} binomial(4*j+2, j)*binomial(4*(n-j), n-j)/((4*j+2)*(n-j+1)) - 52*[n=3] for n > 2, where [ ] is the Iverson bracket.

A361033 a(n) = 3*(4*n)!/(n!*(n+1)!^3).

Original entry on oeis.org

3, 9, 280, 17325, 1513512, 162954792, 20193091776, 2768662192725, 409716429837000, 64358256798795960, 10605621798062141760, 1817833036248401270280, 321997225483126007438400, 58649494641569379926280000, 10941649720331183519046796800, 2084191938036600263793119045925
Offset: 0

Views

Author

Peter Bala, Mar 01 2023

Keywords

Comments

Row 0 of A361032.
The central binomial numbers A000984(n) = (2*n)!/n!^2 have the property that A000984(n) is divisible by n + 1 and the result (2*n)!/(n!*(n+1)!) is the n-th Catalan number A000108(n). Similarly, the numbers A008977(n) = (4*n)!/n!^4 appear to have the property that 3*A008977(n) is divisible by (n + 1)^3, leading to the present sequence. Cf. A361028. Do these numbers have a combinatorial interpretation?
Conjecture: a(n) is odd iff n = 2^k - 1 for some k >= 0.

Crossrefs

Programs

  • Maple
    seq(3*(4*n)!/(n!*(n+1)!^3), n = 0..20);
  • Mathematica
    Table[3 (4n)!/(n! ((n+1)!)^3),{n,0,15}] (* Harvey P. Dale, Jul 30 2024 *)

Formula

a(n) = 3*A008977(n)/(n+1)^3.
a(n) = (3/4)*A008977(n+1)/((4*n+1)*(4*n+2)*(4*n+3)).
a(n) = (1/2)*A007228(n)*A007226(n)*A000108(n).
P-recursive: a(n) = 4*(4*n-1)*(4*n-2)*(4*n-3)/(n+1)^3 * a(n-1) with a(0) = 3.
The o.g.f. A(x) satisfies the differential equation
x^3*(1 - 256*x)*A(x)''' + x^2*(6 - 1152*x)*A(x)'' + x*(7 - 816*x)*A(x)' + (1 - 24*x)*A(x) - 3 = 0 with A(0) = 3, A'(0) = 9 and A''(0) = 560.
a(n) ~ 3*sqrt(1/(2*Pi^3)) * 2^(8*n)/n^(9/2).

A361038 a(n) = 1680 * (3*n)!/((2*n)!*(n+3)!).

Original entry on oeis.org

280, 210, 420, 1176, 3960, 15015, 61880, 271320, 1248072, 5965050, 29414700, 148874400, 770263200, 4061212722, 21765976680, 118336861720, 651555929640, 3627981880950, 20405547069180, 115815267149400, 662742214356600
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

Compare with the super ballot numbers A007272(n) = 60*(2*n)!/(n!*(n+3)!).

Crossrefs

Programs

  • Maple
    seq( 1680 * (3*n)!/((2*n)!*(n+3)!), n = 0..20);

Formula

a(n) = 280*binomial(3*n,n) - 228*binomial(3*n,n+1) + 54*binomial(3*n,n+2) - 5*binomial(3*n,n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 3)*(2*n - 1) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 280.
a(n) ~ (27/4)^n * 840*sqrt(3/Pi)/n^(7/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 7)*A'(x) + (6*x + 6)*A(x) - 1680 = 0, with A(0) = 280 and A'(0) = 210.

A361039 a(n) = 55440 * (3*n)!/((2*n)!*(n+4)!).

Original entry on oeis.org

2310, 1386, 2310, 5544, 16335, 55055, 204204, 813960, 3432198, 15142050, 69334650, 327523680, 1588667850, 7883530578, 39904290580, 205532444040, 1075067283906, 5701114384350, 30608320603770, 166169731127400, 911270544740325
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

Compare with the super ballot numbers A348893(n) = 840*(2*n)!/(n!*(n+4)!).

Crossrefs

Programs

  • Maple
    seq(  55440 * (3*n)!/((2*n)!*(n+4)!), n = 0..20);

Formula

a(n) = 2310*binomial(3*n,n) - 2057*binomial(3*n,n+1) + 627*binomial(3*n,n+2) - 102*binomial(3*n,n+3) + 7*binomial(3*n, n+4). Thus a(n) is an integer.
P-recursive: 2*(n + 4)*(2*n - 1) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 2310.
a(n) ~ (27/4)^n * 27720*sqrt(3/Pi)/n^(9/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 9)*A'(x) + (6*x + 8)*A(x) - 18480 = 0, with A(0) = 2310 and A'(0) = 1386.

A361037 a(n) = 20*(3*n)!/((2*n)!*(n+2)!).

Original entry on oeis.org

10, 10, 25, 84, 330, 1430, 6630, 32300, 163438, 852150, 4552275, 24812400, 137547000, 773564328, 4405019090, 25357898940, 147375745990, 863805209750, 5101386767295, 30332569967700, 181465130121450, 1091677288630950
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

Gessel (1992) introduced sequences {b(r,n): n >= 0} of super ballot numbers defined by b(r,n) = J(r) * (2*n)!/(n!*(n + r + 1)!), r = 0,1,2,..., where J(r) = (2*r + 2)!/(2*(r + 1)!) = (2^r)*Product_{j = 0..r} (2*j + 1) is chosen so that these numbers are always integers. The sequence {b(1,n) : n >= 0} is A000108, the sequence of Catalan numbers. See A135573 for a table of these generalized Catalan numbers.
We carry out an analogous construction using the numbers B(n) = A005809(n) = binomial(3*n,n) = (3*n)!/((2*n)!*n!) in place of the central binomial numbers. We define B(r,n), r = 0,1,2, ..., by B(r,n) = F(r) * (3*n)!/((2*n)!*(n + r + 1)!), where F(r) is the minimal choice to produce integer values for these quantities for all n. This sequence is the case r = 1. See A007226 (r = 0), A361038 (r = 2) and A361039 (r = 3).

Crossrefs

Programs

  • Maple
    seq( 20*(3*n)!/((2*n)!*(n+2)!), n = 0..20);
  • Mathematica
    Table[20 (3n)!/((2n)!(n+2)!),{n,0,30}] (* Harvey P. Dale, Aug 05 2024 *)

Formula

a(n) = 10*binomial(3*n,n) - 7*binomial(3*n,n+1) + binomial(3*n,n+2). Thus a(n) is an integer.
P-recursive: 2*(n + 2)(2*n - 1)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 10.
a(n) ~ (27/4)^n * 10*sqrt(3/Pi)/n^(5/2).
The o.g.f. satisfies the differential equation
x^2*(27*x - 4)*A''(x) + 2*x*(27*x - 5)*A'(x) + 2*(3*x + 2)*A(x) - 40 = 0, with A(0) = 10 and A'(0) = 10.

A334641 a(n) is the total number of down steps between the 3rd and 4th up steps in all 2-Dyck paths of length 3*n.

Original entry on oeis.org

0, 0, 0, 43, 108, 444, 2099, 10683, 56994, 314296, 1776519, 10236081, 59892690, 354886920, 2125117332, 12839859620, 78176677734, 479177993904, 2954360065247, 18309779343549, 114001476318240, 712751759478780, 4472908385838795, 28165267333869435
Offset: 0

Views

Author

Benjamin Hackl, May 07 2020

Keywords

Comments

A 2-Dyck path is a nonnegative lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0.
For n = 3, there is no 4th up step, a(3) = 43 enumerates the total number of down steps between the 3rd up step and the end of the path.

Crossrefs

Programs

  • Mathematica
    a[0] = a[1] = a[2] = 0; a[n_] := 2 * Sum[Binomial[3*j + 1, j] * Binomial[3*(n - j), n - j]/((3*j + 1)*(n - j + 1)), {j, 1, 3}]; Array[a, 24, 0] (* Amiram Eldar, May 09 2020 *)
  • PARI
    a(n) = if (n<=2, 0, 2*sum(j=1, 3, binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)))); \\ Michel Marcus, May 09 2020

Formula

a(0) = a(1) = a(2) = 0 and a(n) = 2*Sum_{j=1..3}binomial(3*j+1, j)*binomial(3*(n-j), n-j)/((3*j+1)*(n-j+1)) for n > 2.

A334643 a(n) is the total number of down steps between the second and third up steps in all 2_1-Dyck paths of length 3*n. A 2_1-Dyck path is a lattice path with steps (1, 2), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.

Original entry on oeis.org

0, 0, 16, 53, 209, 963, 4816, 25367, 138531, 777041, 4449511, 25901655, 152818458, 911755012, 5491420104, 33343242196, 203881825163, 1254342228285, 7759025239189, 48227078649155, 301056318504165, 1886647802277315, 11864793375611820, 74854437302309175
Offset: 0

Views

Author

Benjamin Hackl, May 12 2020

Keywords

Comments

For n = 2, there is no 3rd up step, a(2) = 16 enumerates the total number of down steps between the 2nd up step and the end of the path.

Examples

			For n = 2, the 2_1-Dyck paths are UUDDDD, UDUDDD, UDDUDD, UDDDUD, DUDDUD, DUDUDD, DUUDDD. In total, there are a(2) = 4 + 3 + 2 + 1 + 1 + 2 + 3 = 16 down steps between the 2nd up step and the end of the path.
		

Crossrefs

Programs

  • SageMath
    [binomial(3*n + 1, n)/(3*n + 1) + 4*sum([binomial(3*j + 2, j)*binomial(3*(n - j), n - j)/(3*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 7*(n==2) if n >= 2 else 0 for n in srange(30)] # Benjamin Hackl, May 12 2020

Formula

a(0) = a(1) = 0 and a(n) = binomial(3*n+1, n)/(3*n+1) + 4*Sum_{j=1..2}binomial(3*j+2, j)*binomial(3*(n-j), n-j)/((3*j+2)*(n-j+1)) - 7*[n=2] for n > 1, where [ ] is the Iverson bracket.

A121446 Number of ternary trees with n edges and such that the first leaf in the preorder traversal is at level 1.

Original entry on oeis.org

3, 3, 10, 42, 198, 1001, 5304, 29070, 163438, 937365, 5462730, 32256120, 192565800, 1160346492, 7048030544, 43108428198, 265276342782, 1641229898525, 10202773534590, 63698396932170, 399223286267190, 2510857763851185, 15842014607109600, 100244747986099080
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2006

Keywords

Comments

A ternary tree is a rooted tree in which each vertex has at most three children and each child of a vertex is designated as its left or middle or right child.

Examples

			a(1) = 3 because we have the trees /, | and \.
a(2) = 3 because we have the trees /|, /\ and |\.
		

Crossrefs

Column 1 of A121445.

Programs

  • Maple
    a:=proc(n) if n=1 then 3 else (2/n)*binomial(3*n-3,n-1) fi end: seq(a(n),n=1..25);
  • Mathematica
    a[1] = 3; a[n_] := (2/n) Binomial[3 n - 3, n - 1];
    Array[a, 22] (* Jean-François Alcover, Nov 28 2017 *)

Formula

a(n) = A007226(n-1) for n >= 2.
a(1) = 3 and a(n) = (2/n)*binomial(3*n-3, n-1) for n >= 2.
G.f.: (h - 1 - z)/(h - 1), where h = 1 + z*h^3 = 2*sin(arcsin(sqrt(27*z/4))/3)/sqrt(3*z).
D-finite with recurrence 2*n*(2*n - 3)*a(n) - 3*(3*n - 4)*(3*n - 5)*a(n-1) = 0 for n >= 3. - R. J. Mathar, Jun 22 2016
G.f.: 1-(1-(4*sin(arcsin((3^(3/2)*sqrt(x))/2)/3)^2)/3)^3. - Vladimir Kruchinin, Oct 04 2022
From Peter Bala, Jul 24 2025: (Start)
The g.f. A(x) = 3*x + 3*x^2 + 10*x^3 + ... satisfies the algebraic equation A(x)^3 - (3*x + 2)*A(x)^2 + (3*x^2 + 6*x + 1)*A(x) - (x^3 + 3*x^2 + 3*x) = 0.
1 + x/(1 - A(x)) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + ... is the g.f. of A001764.
The g.f. A(x) satisfies (and is uniquely determined by) the conditions [x^n] (A(x) - 1)^n = 3 for n >= 1. (End)

A334608 a(n) is the total number of down-steps after the final up-step in all 3_1-Dyck paths of length 4*n (n up-steps and 3n down-steps).

Original entry on oeis.org

0, 5, 34, 236, 1714, 12922, 100300, 796572, 6443536, 52909593, 439896626, 3695917940, 31331587252, 267669458420, 2302188456120, 19918434257052, 173240112503520, 1513821095788420, 13283883136738344, 117009704490121520, 1034217260142108570, 9169842145476773250, 81537271617856588380
Offset: 0

Views

Author

Andrei Asinowski, May 13 2020

Keywords

Comments

A 3_1-Dyck path is a lattice path with steps U=(1, 3), d=(1, -1) that starts at (0,0), stays (weakly) above y=-1, and ends at the x-axis.

Examples

			For n=1, a(1)=5 is the total number of down-steps after the last up-step in Uddd, dUdd.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := 2 * Binomial[4*n + 6, n + 1]/(4*n + 6) - 4 * Binomial[4*n + 2, n]/(4*n + 2); Array[a, 23, 0] (* Amiram Eldar, May 13 2020 *)
  • SageMath
    [2*binomial(4*(n + 1) + 2, n + 1)/(4*(n + 1) + 2) - 4*binomial(4*n + 2, n)/(4*n + 2) for n in srange(30)] # Benjamin Hackl, May 13 2020

Formula

a(n) = 2*binomial(4*(n+1)+2, n+1)/(4*(n+1)+2) - 4*binomial(4*n+2, n)/(4*n+2).
Previous Showing 11-20 of 23 results. Next