cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A073527 Numbers n such that denominator of Sum_{k=1..n} 1/k^2 is not a square.

Original entry on oeis.org

10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2002

Keywords

Crossrefs

Cf. A007407, A073526 (complement).

Extensions

More terms from Matthew Conroy, Sep 09 2002

A242241 Least prime p such that H(2,n) = sum_{k=1..n}1/k^2 == 0 (mod p) but there is no 0 < k < n with H(2,k) == 0 (mod p), or 1 if such a prime p does not exist.

Original entry on oeis.org

1, 5, 7, 41, 11, 13, 266681, 17, 19, 178939, 23, 18500393, 40799043101, 29, 31, 619, 601, 8821, 86364397717734821, 421950627598601, 2621, 295831, 47, 2237, 157, 53, 307, 7741, 6823, 61, 205883, 487, 67, 21767149, 71, 73, 149, 2004383, 79, 34033
Offset: 1

Views

Author

Zhi-Wei Sun, May 09 2014

Keywords

Comments

Conjecture: (i) a(n) is prime for any n > 1.
(ii) For any prime p > 5, there exists a prime q < p/2 such that H(2,q-1) = sum_{0
See also A242222 and A242223 for similar conjectures involving harmonic numbers H(n) = sum_{k=1..n}1/k (n > 0).

Examples

			a(4) = 41 since H(2,4) = 5*41/(2^4*3^2) but none of H(2,1) = 1, H(2,2) = 5/2^2 and H(2,3) = 7^2/(2^2*3^2) is congruent to 0 modulo 41.
		

Programs

  • Mathematica
    h[n_]:=Numerator[HarmonicNumber[n,2]]
    f[n_]:=FactorInteger[h[n]]
    p[n_]:=p[n]=Table[Part[Part[f[n], k], 1], {k, 1, Length[f[n]]}]
    Do[If[h[n]<2, Goto[cc]]; Do[Do[If[Mod[h[i], Part[p[n], k]]==0, Goto[aa]], {i, 1, n-1}]; Print[n, " ", Part[p[n], k]]; Goto[bb]; Label[aa]; Continue, {k, 1, Length[p[n]]}]; Label[cc]; Print[n, " ", 1]; Label[bb]; Continue, {n,1,40}]

A266581 Numerators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.

Original entry on oeis.org

1, 15, 1145, 7795, 10605889, 59526571, 139954552433, 34217723087, 806539298609929, 3932874930141827, 4100492004734957581, 96658551584623754987, 838219558485468722155050481, 142916593419748754034403361, 158366688967470905539833679601, 102317913027622943383626250477
Offset: 0

Author

Ilya Gutkovskiy, May 07 2016

Keywords

Comments

Numerators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).
Numerators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).

Examples

			1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, …
		

Crossrefs

Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).
Cf. A000330, A007406, A007407, A273698 (denominators).

Programs

  • Mathematica
    Table[Numerator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]

A273698 Denominators of expansion of PolyLog(-2, x)/PolyLog(2, x), where PolyLog(m, x) is the polylogarithm function.

Original entry on oeis.org

1, 4, 144, 576, 518400, 2073600, 3657830400, 696729600, 13168189440000, 52672757760000, 45888506560512000, 917770131210240000, 6840049010896797696000000, 1013340594206932992000000, 984967057569138868224000000, 562838318610936496128000000
Offset: 0

Author

Ilya Gutkovskiy, May 28 2016

Keywords

Comments

Denominators of expansion of (Sum_{k>=1} x^k*k^2)/(Sum_{k>=1} x^k/k^2).
Denominators of numbers for which convolution with Sum_{k=1..n} 1/k^2 = A007406(n)/A007407(n) gives Sum_{k=1..n} k^2 = A000330(n).

Examples

			1, 15/4, 1145/144, 7795/576, 10605889/518400, 59526571/2073600, 139954552433/3657830400, 34217723087/696729600, 806539298609929/13168189440000, ...
		

Crossrefs

Cf. A232193 (numerators of expansion of PolyLog(-1, x)/PolyLog(1, x)), A232248 (denominators of expansion of PolyLog(-1, x)/PolyLog(1, x)).
Cf. A000330, A007406, A007407, A266581 (numerators).

Programs

  • Mathematica
    Table[Denominator[SeriesCoefficient[PolyLog[-2, x]/PolyLog[2, x], {x, 0, n}]], {n, 0, 15}]

A322266 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,       1,          1,              1,                  1,  ...
  2,     3/2,        5/4,            9/8,              17/16,  ...
  3,    11/6,      49/36,        251/216,          1393/1296,  ...
  4,   25/12,    205/144,      2035/1728,        22369/20736,  ...
  5,  137/60,  5269/3600,  256103/216000,  14001361/12960000,  ...
		

Crossrefs

Numerators are in A322265.

Programs

  • Mathematica
    Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten

Formula

G.f. of column k: PolyLog(k,x)/(1 - x), where PolyLog() is the polylogarithm function (for rationals Sum_{j=1..n} 1/j^k).

A322557 Smallest k such that floor(N*sqrt(Sum_{m=1..k} 6/m^2)) = floor(N*Pi), where N = 10^n.

Original entry on oeis.org

7, 23, 600, 1611, 10307, 359863, 1461054, 17819245, 266012440, 1619092245, 10634761313, 97509078554, 1203836807622, 10241799698090, 294871290395291, 4004525174270251, 24827457879988026, 112840588371964574, 2064072875704476882, 15243903003939891921
Offset: 0

Author

Zachary Russ, Aug 28 2019

Keywords

Comments

6*A007406(k)/A007407(k) = Sum_{m=1..k} 6/m^2.
It seems nearly certain that, for all n >= 0, a(n) = ceiling(z - 1/2 - 1/(12*z)) where z = 6/(Pi^2 - (floor(Pi*10^n)/10^n)^2). - Jon E. Schoenfield, Aug 31 2019

Examples

			floor((10^0)*sqrt(Sum_{m=1..7} 6/m^2)) = 3.
floor((10^1)*sqrt(Sum_{m=1..23} 6/m^2)) = 31.
floor((10^2)*sqrt(Sum_{m=1..600} 6/m^2)) = 314.
floor((10^3)*sqrt(Sum_{m=1..1611} 6/m^2)) = 3141.
floor((10^4)*sqrt(Sum_{m=1..10307} 6/m^2)) = 31415.
floor((10^5)*sqrt(Sum_{m=1..359863} 6/m^2)) = 314159.
		

Crossrefs

Cf. A011545 (floor(Pi*10^n)).

Programs

  • PARI
    a(n) = {my(k = 1); t = floor(10^(n)*Pi); while(floor(10^(n)*sqrt(sum(m = 1, k, 6/m^2))) != t, k++); k; } \\ Jinyuan Wang, Aug 30 2019

Extensions

a(6)-a(19) from Jon E. Schoenfield, Aug 31 2019

A384818 Denominator of the sum of the reciprocals of all square divisors of all positive integers <= n.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 2, 18, 18, 18, 36, 36, 36, 36, 144, 144, 144, 144, 144, 144, 144, 144, 144, 3600, 3600, 1200, 1200, 1200, 1200, 1200, 600, 600, 600, 600, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 1800, 600, 600, 600, 1200, 58800, 58800, 58800, 58800, 58800
Offset: 1

Author

Ilya Gutkovskiy, Jun 10 2025

Keywords

Examples

			1, 2, 3, 17/4, 21/4, 25/4, 29/4, 17/2, 173/18, 191/18, 209/18, 463/36, ...
		

Crossrefs

Cf. A007407, A017668, A284650, A309125, A373440, A384817 (numerators).

Programs

  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - x) Sum[x^(k^2)/(k^2 (1 - x^(k^2))), {k, 1, nmax}], {x, 0, nmax}], x] // Denominator // Rest
    Table[Sum[Floor[n/k^2]/k^2, {k, 1, Floor[Sqrt[n]]}], {n, 1, 53}] // Denominator
  • PARI
    a(n) = denominator(sum(k=1, n, sumdiv(k, d, if (issquare(d), 1/d)))); \\ Michel Marcus, Jun 10 2025

Formula

G.f. for fractions: (1/(1 - x)) * Sum_{k>=1} x^(k^2) / (k^2*(1 - x^(k^2))).
a(n) is the denominator of Sum_{k=1..floor(sqrt(n))} floor(n/k^2) / k^2.
A384817(n) / a(n) ~ Pi^4 * n / 90.

A119785 Numerator of the product of the n-th square pyramidal number and the n-th generalized harmonic number in power 2.

Original entry on oeis.org

1, 25, 343, 1025, 57959, 488579, 266681, 18321733, 185784679, 21651619, 5507071447, 15632832085, 40799043101, 1187015026009, 6362282386111, 13990468150733, 238357395880861, 167890966963712483, 86364397717734821
Offset: 1

Author

Alexander Adamchuk, Jun 25 2006

Keywords

Comments

p^2 divides a(p-1) for prime p>3. p^2 divides a((p-1)/2) for prime p>3.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[n(n+1)(2n+1)/6*Sum[1/k^2,{k,1,n}],{n,1,30}]]
    Numerator[Table[Sum[Sum[i^2/j^2, {i, 1, n}], {j, 1, n}],{n,1,30}]]

Formula

a(n) = numerator[Sum[i^2,{i,1,n}] * Sum[1/j^2,{j,1,n}]] = numerator[n(n+1)(2n+1)/6 * Sum[1/j^2,{j,1,n}]] = numerator[A000330(n) * ( A007406(n)/A007407(n) )]. Also a(n) = numerator[Sum[Sum[i^2/j^2, {i, 1, n}], {j, 1, n}]].

A120287 Numerator of 1/n^3 + 2/(n-1)^3 + 3/(n-2)^3 +...+ (n-1)/2^3 + n.

Original entry on oeis.org

1, 17, 355, 7715, 203413, 492527, 49601051, 1823359051, 16684019407, 186004308017, 22757931053507, 298630937704541, 50872538998767329, 51223731720255509, 103063783892301061, 7045407930432340853
Offset: 1

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

p divides a(p-1) and a(p-2) for prime p>3.
Numerators of the Eulerian numbers T(-3,k) for k = 0,1..., if T(n,k) is extended to negative n by the recurrence T(n,k) = (k+1)*T(n-1,k) + (n-k)*T(n-1,k-1) (indexed as in A173018). - Michael J. Collins, Oct 10 2024

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/i^3,{i,1,k}],{k,1,n}],{n,1,25}]]

Formula

a(n) = numerator[Sum[Sum[1/i^3,{i,1,k}],{k,1,n}]].

A120288 Numerator of 1/n^4 + 2/(n-1)^4 + 3/(n-2)^4 +...+ (n-1)/2^4 + n.

Original entry on oeis.org

1, 33, 2033, 87425, 11440331, 82653347, 58026230977, 472474237481, 38806560342253, 431701520479427, 579954645879123307, 7598398013722878661, 16804804720323979155637, 16901141697896969645401
Offset: 1

Author

Alexander Adamchuk, Jul 07 2006

Keywords

Comments

p^2 divides a(p-1) for prime p>3. p divides a(p-2) for prime p>5.

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[Sum[1/i^4,{i,1,k}],{k,1,n}],{n,1,20}]]

Formula

a(n) = numerator[Sum[Sum[1/i^4,{i,1,k}],{k,1,n}]].
Previous Showing 41-50 of 52 results. Next