cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A136682 Numbers k such that A119682(k) is prime.

Original entry on oeis.org

2, 3, 5, 8, 23, 41, 47, 48, 49, 95, 125, 203, 209, 284, 323, 395, 504, 553, 655, 781, 954, 1022, 1474, 1797, 1869, 1923, 1934, 1968, 2043, 2678, 3413, 3439, 4032, 4142, 4540, 4895, 5018, 5110, 5194, 5357, 6591, 11504, 11949, 14084, 20365
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A119682(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^2.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^2, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,125} ]

Extensions

a(12)-a(17) from Alexander Adamchuk, Apr 28 2008
a(18)-a(31) from Amiram Eldar, Mar 14 2019
a(32)-a(45) from Robert Price, Apr 14 2019

A136683 Numbers k such that A136675(k) is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 9, 20, 21, 29, 119, 132, 151, 351, 434, 457, 462, 572, 611, 930, 1107, 1157, 1452, 1515, 2838, 3997, 5346, 6463, 6725, 7664, 10234, 14168, 14299
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136675(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^3.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^3, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,151} ]
    Flatten[Position[Numerator[Accumulate[Table[(-1)^(k+1) 1/k^3,{k,3000}]]],?PrimeQ] ] (* _Harvey P. Dale, Feb 12 2013 *)
  • PARI
    isok(n) = ispseudoprime(numerator(sum(k=1, n, (-1)^(k+1) / k^3))); \\ Daniel Suteu, Mar 15 2019

Extensions

More terms from Harvey P. Dale, Feb 12 2013
a(25)-a(28) from Amiram Eldar, Mar 15 2019
a(29)-a(32) from Robert Price, Apr 22 2019

A136684 Numbers k such that A120296(k) is prime.

Original entry on oeis.org

3, 5, 8, 11, 20, 38, 61, 65, 71, 80, 83, 93, 233, 704, 1649, 2909, 3417, 3634, 9371
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A120296(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^4.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^4, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,100} ]
    Select[Range[1000],PrimeQ[Numerator[Sum[(-1)^(k+1) 1/k^4,{k,#}]]]&] (* Harvey P. Dale, Aug 28 2012 *)

Extensions

More terms from Harvey P. Dale, Aug 28 2012
a(15)-a(19) from Robert Price, Apr 23 2019

A136685 Numbers k such that A136676(k) is prime.

Original entry on oeis.org

2, 19, 51, 78, 84, 130, 294, 910, 2223, 2642, 3261, 4312, 4973, 7846, 9439
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136676(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^5.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^5, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,130} ]

Extensions

a(7)-a(8) from Amiram Eldar, Mar 14 2019
a(9)-a(15) from Robert Price, Apr 16 2019

A136686 Numbers k such that A136677(k) is prime.

Original entry on oeis.org

19, 47, 164, 235, 504, 1109, 1112, 5134, 9222, 12803
Offset: 1

Views

Author

Alexander Adamchuk, Jan 16 2008

Keywords

Comments

A136677(k) = Numerator of Sum_{j=1..k} (-1)^(j+1)/j^6.

Crossrefs

Programs

  • Mathematica
    Do[ f=Numerator[ Sum[ (-1)^(k+1)*1/k^6, {k,1,n} ] ]; If[ PrimeQ[f], Print[ {n,f} ] ], {n,1,130} ]

Extensions

a(4)-a(5) from Hiroaki Yamanouchi, Sep 22 2014
a(6) from Amiram Eldar, Mar 14 2019
a(7)-a(9) from Robert Price, Apr 20 2019
a(10) from Michael S. Branicky, Nov 16 2024

A128673 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 3.

Original entry on oeis.org

94556602, 141834903, 189113204, 283669806, 450820422
Offset: 1

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Note that {a(n)} contains the following geometric progressions: ((16843-1)/3)*16843^m found by Max Alekseyev, ((16843-1)/2)*16843^m found by Max Alekseyev, ((16843-1)*2/3)*16843^m, (16843-1)*16843^m, 20826*21647^m found by Max Alekseyev, ((2124679-1)/3)*2124679^m, ((2124679-1)/2)*2124679^m, ((2124679-1)*2/3)*2124679^m, (2124679-1)*2124679^m. Here {16843, 2124679} = A088164 are the only two currently known Wolstenholme Primes: primes p such that {2p-1} choose {p-1} == 1 mod p^4. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=3; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n, 1, 450820422} ]

A128676 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the m-th alternating generalized harmonic number H'(m,k), for k = 6.

Original entry on oeis.org

20, 100, 110, 156, 161, 272, 342, 345, 500, 506, 812, 930, 1210, 1332, 1640, 1806, 2028, 2162, 2500, 2756, 3051, 3422, 3660, 3703, 4422, 4624, 4970, 5256, 6162, 6498, 6806, 7832, 7935, 9312, 9605, 10100, 10506, 11342, 11638, 11772, 12500, 12656, 13310
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all terms of geometric progressions of the form (p-1)*p^k, k > 0, for some primes p >= 5, such as 4*5^k, 7*23^k, 15*23^k, 27*113^k, etc. Note the factorization of initial terms of {a(n)} = {4*5, 4*5^2, 10*11, 12*13, 7*23, 16*17, 18*19, 15*23, 4*5^3, 22*23, 28*29, 30*31, 10*11^2, 36*37, 40*41, 42*43, 12*13^2, 46*47, 4*5^4, 52*53, 27*113, 58*59, 60*61, 7*23^2, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=6; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,3703} ]

Extensions

Edited and extended by Max Alekseyev, May 08 2010

A103347 Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).

Original entry on oeis.org

1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(7,n), of Euler's Zeta(7). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805.
For the denominators see A103348 and for the rationals Zeta(7,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^7).
G.f. for rationals Zeta(7, n): polylogarithm(7, x)/(1-x).

A120269 Numerator of Sum_{k=1..n} 1/(2k-1)^4.

Original entry on oeis.org

1, 82, 51331, 123296356, 9988505461, 146251554055126, 4177234784807204311, 4177316109293528392, 348897735816424941428857, 45469045689642442391390873722, 45469276109166591994111574347
Offset: 1

Views

Author

Alexander Adamchuk, Jul 01 2006

Keywords

Comments

a((p-1)/2) is divisible by prime p > 5.
Denominators are in A128493.
The limit of the rationals r(n) = Sum_{k=1..n} 1/(2k-1)^4, for n -> infinity, is (Pi^4)/96 = (1 - 1/2^4)*zeta(4), which is approximately 1.014678032.
r(n) = (Psi(3, 1/2) - Psi(3, n+1/2))/(3!*2^4) for n >= 1, where Psi(n,k) = Polygamma(n,k) is the n^th derivative of the digamma function. Psi(3, 1/2) = 3!*15*zeta(4) = Pi^4. - Jean-François Alcover, Dec 02 2013

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
  • Mathematica
    Numerator[Table[Sum[1/(2k-1)^4,{k,1,n}],{n,1,20}]]
    Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
  • PARI
    for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018
    

A128675 Numbers m such that m^k does not divide the denominator of the m-th generalized harmonic number H(m,k) nor the denominator of the n-th alternating generalized harmonic number H'(m,k), for k = 5.

Original entry on oeis.org

444, 666, 888, 1332, 16428, 24642, 32856, 49284, 607836, 911754, 1215672, 1823508
Offset: 1

Views

Author

Alexander Adamchuk, Mar 20 2007

Keywords

Comments

Generalized harmonic numbers are defined as H(m,k) = Sum_{j=1..m} 1/j^k. Alternating generalized harmonic numbers are defined as H'(m,k) = Sum_{j=1..m} (-1)^(j+1)/j^k.
Sequence contains all terms of geometric progressions 37^k*(37-1)/3, 37^k*(37-1)/2, 37^k*(37-1)*2/3, 37^k*(37-1) for k > 0. Note the factorization of initial terms of {a(n)} = {37*12, 37*18, 37*24, 37*36, ...}. See more details in Comments at A128672 and A125581.

Crossrefs

Programs

  • Mathematica
    k=5; f=0; g=0; Do[ f=f+1/n^k; g=g+(-1)^(n+1)*1/n^k; kf=Denominator[f]; kg=Denominator[g]; If[ !IntegerQ[kf/n^k] && !IntegerQ[kg/n^k], Print[n] ], {n,1,2000} ]

Extensions

Eight more terms from Max Alekseyev, May 08 2010
Previous Showing 11-20 of 33 results. Next