cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A318492 a(n) is the denominator of Sum_{d|n} Sum_{j|d} 1/j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 11, 12, 13, 14, 15, 16, 17, 9, 19, 20, 1, 22, 23, 24, 25, 26, 27, 28, 29, 6, 31, 32, 33, 34, 7, 18, 37, 38, 13, 40, 41, 2, 43, 44, 45, 46, 47, 16, 49, 5, 51, 52, 53, 27, 5, 8, 19, 58, 59, 60, 61, 62, 21, 64, 65, 66, 67, 4, 69, 14, 71, 36, 73, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 27 2018

Keywords

Examples

			1, 5/2, 7/3, 17/4, 11/5, 35/6, 15/7, 49/8, 34/9, 11/2, 23/11, 119/12, 27/13, 75/14, 77/15, 129/16, ...
		

Crossrefs

Cf. A000005, A000203, A006171, A007429, A017665, A017666, A060640, A068986 (positions of 1's), A318491 (numerators).

Programs

  • Mathematica
    Denominator[Table[Sum[DivisorSigma[-1, d], {d, Divisors[n]}], {n, 75}]]
    Denominator[Table[Sum[DivisorSigma[1, d]/d, {d, Divisors[n]}], {n, 75}]]
    Denominator[Table[Sum[d DivisorSigma[0, d], {d, Divisors[n]}]/n, {n, 75}]]
    nmax = 75; Rest[Denominator[CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(k (1 - x^k)), {k, 1, nmax}], {x, 0, nmax}], x]]]
    nmax = 75; Rest[Denominator[CoefficientList[Series[-Log[Product[(1 - x^k)^DivisorSigma[0, k], {k, 1, nmax}]], {x, 0, nmax}], x]]]
  • PARI
    a(n) = denominator(sumdiv(n, d, sumdiv(d, j, 1/j))); \\ Michel Marcus, Aug 28 2018

Formula

Denominators of coefficients in expansion of Sum_{k>=1} sigma(k)*x^k/(k*(1 - x^k)), where sigma(k) = sum of divisors of k (A000203).
Denominators of coefficients in expansion of -log(Product_{k>=1} (1 - x^k)^tau(k)), where tau(k) = number of divisors of k (A000005).
a(n) = denominator of Sum_{d|n} sigma(d)/d.
a(n) = denominator of (1/n)*Sum_{d|n} d*tau(d).

A319132 a(n) = Sum_{d|n} Sum_{j|d} mu(j)^2*j, where mu = Möbius function (A008683).

Original entry on oeis.org

1, 4, 5, 7, 7, 20, 9, 10, 9, 28, 13, 35, 15, 36, 35, 13, 19, 36, 21, 49, 45, 52, 25, 50, 13, 60, 13, 63, 31, 140, 33, 16, 65, 76, 63, 63, 39, 84, 75, 70, 43, 180, 45, 91, 63, 100, 49, 65, 17, 52, 95, 105, 55, 52, 91, 90, 105, 124, 61, 245, 63, 132, 81, 19, 105, 260, 69, 133, 125, 252
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 11 2018

Keywords

Comments

Inverse Möbius transform of A048250.

Crossrefs

Programs

  • Magma
    [&+[&+[MoebiusMu(j)^2*j:j in Divisors(d)]:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
    
  • Magma
    [&+[MoebiusMu(d)^2*d*NumberOfDivisors(n div d):d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Nov 13 2019
  • Maple
    with(numtheory): seq(add(mobius(d)^2*d*tau(n/d), d in divisors(n)), n=1..70); # Ridouane Oudra, Nov 13 2019
  • Mathematica
    Table[Sum[Sum[MoebiusMu[j]^2 j, {j, Divisors[d]}], {d, Divisors[n]}], {n, 70}]
    nmax = 70; Rest[CoefficientList[Series[Sum[DivisorSum[k, # &, SquareFreeQ[#] &] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 70; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^(DivisorSum[k, # &, SquareFreeQ[#] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p + 1)*e + 1; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)^2*d*numdiv(n/d)); \\ Michel Marcus, Nov 13 2019; corrected Jun 13 2022
    

Formula

G.f.: Sum_{k>=1} A048250(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(A048250(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
a(p^k) = (p + 1)*k + 1, where p is a prime.
a(n) = Sum_{d|n} mu(d)^2*d*tau(n/d). - Ridouane Oudra, Nov 13 2019
Multiplicative with a(p^e) = (p+1)*e+1. - Amiram Eldar, Oct 25 2020
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 = 0.822467... (A072691). - Amiram Eldar, Nov 13 2022
Dirichlet g.f.: zeta(s)^2*zeta(s-1)/zeta(2*s-2). - Amiram Eldar, Jan 03 2023

A319296 a(n) = (Sum_{d|n} sigma(d)) mod sigma(n).

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 11, 5, 10, 1, 27, 1, 12, 11, 26, 1, 33, 1, 35, 13, 16, 1, 10, 7, 18, 18, 43, 1, 68, 1, 57, 17, 22, 15, 16, 1, 24, 19, 2, 1, 84, 1, 59, 48, 28, 1, 37, 9, 59, 23, 67, 1, 112, 19, 114, 25, 34, 1, 49, 1, 36, 58, 120, 21, 116, 1, 83, 29, 108
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2018

Keywords

Examples

			For n = 4; a(4) = (sigma(1) + sigma(2) + sigma(4)) mod sigma(4) = (1+3+7) mod 7 = 11 mod 7 = 4.
		

Crossrefs

Programs

  • Magma
    [&+[SumOfDivisors(d): d in Divisors(n)] mod  SumOfDivisors(n): n in [1..1000]];
    
  • Mathematica
    Table[Mod[Sum[DivisorSigma[1, d], {d, Divisors[n]}], DivisorSigma[1, n]], {n, 1, 100}] (* Vaclav Kotesovec, Sep 26 2018 *)
  • PARI
    A319296(n) = (sumdiv(n,d,sigma(d))%sigma(n)); \\ Antti Karttunen, Sep 16 2018

Formula

a(n) = A007429(n) mod A000203(n).
a(A221219(n)) = 0.
a(A000040(n)) = 1; the only composite number < 2*10^6 with a(n) = 1 is 636.
a(n) = n only for numbers 4, 10 and 96 < 3000000.

A321140 a(n) = Sum_{d|n} sigma_3(d).

Original entry on oeis.org

1, 10, 29, 83, 127, 290, 345, 668, 786, 1270, 1333, 2407, 2199, 3450, 3683, 5349, 4915, 7860, 6861, 10541, 10005, 13330, 12169, 19372, 15878, 21990, 21226, 28635, 24391, 36830, 29793, 42798, 38657, 49150, 43815, 65238, 50655, 68610, 63771, 84836, 68923, 100050, 79509, 110639, 99822
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2018

Keywords

Comments

Inverse Möbius transform applied twice to cubes.

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(add(sigma[3](k)*x^k/(1-x^k),k=1..n),x,n+1), x, n), n = 1 .. 45); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[Sum[DivisorSigma[3, d], {d, Divisors[n]}] , {n, 45}]
    nmax = 45; Rest[CoefficientList[Series[Sum[DivisorSigma[3, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    f[p_, e_] := (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d, 3)); \\ Michel Marcus, Oct 28 2018

Formula

G.f.: Sum_{k>=1} sigma_3(k)*x^k/(1 - x^k).
a(n) = Sum_{d|n} d^3*tau(n/d).
From Jianing Song, Oct 28 2018: (Start)
Multiplicative with a(p^e) = (p^3*(p^(3e+3) - e - 2) + e + 1)/(p^3 - 1)^2.
Dirichlet g.f.: zeta(s)^2*zeta(s-3). (End)
Sum_{k=1..n} a(k) ~ Pi^8 * n^4 / 32400. - Vaclav Kotesovec, Nov 08 2018

A145398 a(n) = Sum_{d|n} sigma(d) - Sum_{2c|n} sigma(c) + 4*Sum_{4b|n} sigma(b).

Original entry on oeis.org

1, 3, 5, 11, 7, 15, 9, 31, 18, 21, 13, 55, 15, 27, 35, 75, 19, 54, 21, 77, 45, 39, 25, 155, 38, 45, 58, 99, 31, 105, 33, 167, 65, 57, 63, 198, 39, 63, 75, 217, 43, 135, 45, 143, 126, 75, 49, 375, 66, 114, 95, 165, 55, 174, 91, 279, 105, 93, 61, 385, 63, 99, 162, 355, 105, 195
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2009

Keywords

Comments

Dirichlet convolution of [1,-1,0,4,0,0,...] with A007429.

Crossrefs

Programs

  • Maple
    read("transforms") ;  s1 := [1,-1,0,4,seq(0,n=1..40)] ; s2 := [seq(add(sigma(d),d=divisors(n)),n=1..40)] ; DIRICHLET(s1,s2) ; # R. J. Mathar, Feb 07 2011
  • Mathematica
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 3*2^(e + 1) - 4*e - 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 3*2^(f[i,2]+1) - 4*f[i,2] - 5,  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1-1/2^s+4/4^s)*(zeta(s))^2*zeta(s-1).
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 3*2^(e+1)-4*e-5, and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/72 = 1.352904... (A152649). (End)

A211780 a(n) = Sum_{d|n, dA000005 is the number of divisors.

Original entry on oeis.org

0, 2, 2, 7, 2, 14, 2, 18, 9, 18, 2, 43, 2, 22, 20, 41, 2, 54, 2, 57, 24, 30, 2, 106, 13, 34, 31, 71, 2, 110, 2, 88, 32, 42, 28, 162, 2, 46, 36, 142, 2, 138, 2, 99, 81, 54, 2, 237, 17, 102, 44, 113, 2, 178, 36, 178, 48, 66, 2, 325, 2, 70, 99, 183, 40, 194, 2
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2012

Keywords

Comments

Numbers n such that n divides a(n) are given in A068978.

Examples

			For n = 12: Sum_{d|n, d<n} d * tau(n / d) = 1*6 + 2*4 + 3*3 + 4*2 + 6*2 = 43.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[d*DivisorSigma[0, n/d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 27 2012 *)
  • PARI
    A211780(n) = sumdiv(n, d, sigma(d))-n; \\ Antti Karttunen, Nov 13 2017
    
  • Python
    A211780=lambda n:sum(sigma(d) for d in divisors(n, generator=True))-n
    from sympy import divisor_sigma as sigma, divisors # M. F. Hasler, Jun 03 2024

Formula

a(n) = A007429(n) - n = A211779(n) + A000203(n) - n .
a(n) = (Sum_{d|n} A000203(d)) - n. - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^4/36 - 1 = 1.705808... . - Amiram Eldar, Jun 06 2024

Extensions

Name edited by M. F. Hasler, Jun 03 2024

A276736 a(n) = numerator of Sum_{d|n} tau(d)/d.

Original entry on oeis.org

1, 2, 5, 11, 7, 10, 9, 13, 2, 14, 13, 55, 15, 18, 7, 57, 19, 4, 21, 77, 15, 26, 25, 65, 38, 30, 58, 99, 31, 14, 33, 15, 65, 38, 9, 11, 39, 42, 25, 91, 43, 30, 45, 13, 14, 50, 49, 95, 66, 76, 95, 165, 55, 116, 91, 117, 35, 62, 61, 77, 63, 66, 18, 247, 21, 130
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Comments

Also numerators of (Sum_{d|n} sigma(d)) / n.

Examples

			For n=6; {d_6} = {1, 2, 3, 6}; {tau(d)_6} = {1, 2, 2, 4};  Sum_{d|6} tau(d)/d = 1/1 + 2/2 + 2/3 + 4/6 = 20/6 = 10/3; a(6) = 10.
For n=6; {d_6} = {1, 2, 3, 6}; {sigma(d)_6} = {1, 3, 4, 12};  (Sum_{d|6} sigma(d))/6 = (1+3+4+12)/6 = 10/3; a(6) = 10.
		

Crossrefs

Cf. A000005, A007429, A276737 (denominators).

Programs

  • Magma
    [Numerator(&+[NumberOfDivisors(d)/d: d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Table[Numerator@ Total[DivisorSigma[0, #]/#] &@ Divisors@ n, {n, 66}] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    a(n) = numerator(sumdiv(n, d, numdiv(d)/d)); \\ Michel Marcus, Sep 16 2016

Formula

For all n we have: n = (Sum_{d|n} sigma(d)) / (Sum_{d|n} tau(d)/d) = (Sum_{d|n} d*tau(n/d)) / (Sum_{d|n} tau(d)/d) = A007429(n) * A276737(n) / a(n).

A276737 a(n) = denominator of Sum_{d|n} tau(d)/d.

Original entry on oeis.org

1, 1, 3, 4, 5, 3, 7, 4, 1, 5, 11, 12, 13, 7, 3, 16, 17, 1, 19, 20, 7, 11, 23, 12, 25, 13, 27, 28, 29, 3, 31, 4, 33, 17, 5, 2, 37, 19, 13, 20, 41, 7, 43, 4, 5, 23, 47, 16, 49, 25, 51, 52, 53, 27, 55, 28, 19, 29, 59, 12, 61, 31, 7, 64, 13, 33, 67, 68, 69, 5, 71
Offset: 1

Views

Author

Jaroslav Krizek, Sep 16 2016

Keywords

Comments

Also denominator of (Sum_{d|n} sigma(d)) / n.

Examples

			For n=6; {d_6} = {1, 2, 3, 6}; {tau(d)_6} = {1, 2, 2, 4}; Sum_{d|6} tau(d)/d = 1/1 + 2/2 + 2/3 + 4/6 = 20/6 = 10/3; a(6) = 3.
For n=6; {d_6} = {1, 2, 3, 6}; {sigma(d)_6} = {1, 3, 4, 12};  (Sum_{d|6} sigma(d))/6 = (1+3+4+12)/6 = 10/3; a(6) = 3.
		

Crossrefs

Cf. A000005, A007429, A068978, A276736 (numerators).

Programs

  • Magma
    [Denominator(&+[NumberOfDivisors(d)/d: d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    Table[Denominator@ Total[DivisorSigma[0, #]/#] &@ Divisors@ n, {n, 71}] (* Michael De Vlieger, Sep 16 2016 *)
  • PARI
    a(n) = denominator(sumdiv(n, d, numdiv(d)/d)); \\ Michel Marcus, Sep 16 2016

Formula

a(A068978(n)) = 1.
For all n, n = (Sum_{d|n} sigma(d)) / (Sum_{d|n} tau(d)/d) = (Sum_{d|n} d*tau(n/d)) / (Sum_{d|n} tau(d)/d) = A007429(n) * a(n) / A276736(n).

A318446 Inverse Möbius transform of A005187: a(n) = Sum_{d|n} A005187(d).

Original entry on oeis.org

1, 4, 5, 11, 9, 18, 12, 26, 21, 30, 20, 47, 24, 40, 39, 57, 33, 68, 36, 75, 55, 64, 43, 108, 56, 76, 71, 100, 55, 126, 58, 120, 88, 102, 87, 167, 72, 112, 102, 168, 80, 174, 83, 156, 141, 134, 90, 233, 107, 174, 135, 184, 103, 222, 133, 224, 150, 170, 114, 309, 118, 180, 191, 247, 160, 272, 132, 243, 182, 270, 139, 370, 144
Offset: 1

Views

Author

Antti Karttunen, Aug 26 2018

Keywords

Crossrefs

Cf. also A297111, A300244.

Programs

Formula

a(n) = Sum_{d|n} A005187(d).
a(n) = A005187(n) + A318445(n).
a(n) = A318448(n) + A007429(n).

A318448 a(n) = Sum_{d|n} A294898(d), where A294898(d) = A005187(d) - sigma(d).

Original entry on oeis.org

0, 0, 0, 0, 2, -2, 3, 0, 3, 2, 7, -8, 9, 4, 4, 0, 14, -4, 15, -2, 10, 12, 18, -22, 18, 16, 13, 1, 24, -14, 25, 0, 23, 26, 24, -31, 33, 28, 27, -14, 37, -6, 38, 13, 15, 34, 41, -52, 41, 22, 40, 19, 48, -10, 42, -10, 45, 46, 53, -76, 55, 48, 29, 0, 55, 12, 63, 34, 57, 18, 66, -98, 69, 64, 42, 37, 64, 16, 73, -42, 51, 72, 78, -74, 74, 74, 73, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 27 2018

Keywords

Comments

Inverse Möbius transform of A294898.

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A294898(d).
a(n) = A318447(n) + A294898(n).
a(n) = A318446(n) - A007429(n).
a(n) = A296075(n) - A093653(n).
Previous Showing 21-30 of 61 results. Next